
A Component Oriented Domain Architecture  
for Fish Farming 

 

Svein Hallsteinsen 
SINTEF Telecom and Informatics 

N-7465 Trondheim, Norway 
+47 73593010 

svein.hallsteinen@informatics.sintef.no 
 

Magne Johnsen 
Superior Systems 

Olav Tryvasons gt. 39-41 
N-7011 Trondheim, Norway 
magne.johnsen@superior.no 

 

Øyvind Dragsten 
Icon Medialab  

Box 2393 Solli N-0201Oslo, Norway  
+47 98820387 

oyvind.dragsten@iconmedialab.no 
 

Jan Ove Ofstad 
Superior Systems 

Olav Tryvasons gt. 39-41 
N-7011 Trondheim, Norway 
Jan.Ove.Ofstad@superior.no 

 

ABSTRACT 
This paper presents experiences with applying the Magma 
model for component based software engineering for a 
family of applications supporting fish farming.  It focuses 
on lessons learned from the design and evaluation of a 
common component based architecture as a means to cope 
with challenges such a rapidly changing requirements and a 
dynamic technology environment.  It concludes that such an 
architecture is a good match in this case.   
 

INTRODUCTION 
The Magma model [2] is an approach to component based 
software engineering tailored for developing software for a 
market. Typical for such development is that requirements 
varies between different users and evolves rapidly over 
time. Furthermore the competition pushes for rapid 
exploitation of advances in underpinning technologies. 
The model was developed in a joint effort between the 
Norwegian association of the software industry (PROFF), 
SINTEF and a handful pilot users.  
 In this paper we present experiences with the design of a 
component oriented domain architecture by Superior 
Systems, which is a small Norwegian company developing 
software products for the fish farming industry and that was 
one of the pilot users in the Magma project. 
This effort was one step in in a strategic move towards full 
adoption of the Magma model for all software development 
in Superior Systems. 
 

BUSINESS PROBLEM 
Fish farming is a rapidly growing business area. In a 
relatively short time it has evolved from a simple craft 
based production to a knowledge intensive industrialized 
production with rapidly growing needs for software systems 

that support optimal planning, control and documentation of 
the production process as well as common business 
processes like accounting and budgeting. 
As a result of this rapid evolution Superior experience a 
strong market pull for evolution of the software products 
they supply, both in terms of demands for new functionality 
and in terms of demands for distributed operation and 
internet based access to the system.  
In addition the Superior products are marketed and sold 
internationally and has to cope with variations between 
different countries in language, traditions and governmental 
regulations. 
It was realized that the monolithic architecture of the 
current system made it difficult and prohibitively expensive 
to accommodate the pace of evolution of the product that 
were foreseen as necessary to remain competitive in the 
marketplace. 
This situation was typical of the pilot users of Magma, and 
both earlier experience from software reuse projects and 
experiences from other engineering disciplines had 
convinced us that a component based approach was the 
most promising approach to achieving the flexibility called 
for in order to cope with such challenges as described 
above. 
 

TECHNICAL APPROACH 
Figure 1 illustrates the basic assumptions of the Magma 
Model.  
The typical user of the Magma model is a software 
developing company that specialises in providing software 
products for particular business domain. A business domain 
is characterised by business processes that usually involves 
human actors and manipulate business artifacts and that are 
common for businesses belonging to that domain, although 

mailto:svein.hallsteinen@informatics.sintef.no


considerable variation in how the business processes are 
carried out in detail is the norm. 
A domain is supported by an ensemble of software 
applications provided by software product companies that 
specialize in applications for that particular problem 
domain. 
 

Figure 1 Reference Model 
 
 An application is a software product that is used by the 
actors to carry out business processes, and is typically 
tailored to support a particular subprocess or a particular 
type of actor in the business domain. 
Applications use components to implement the end user 
functionality that they offer.  
This structure of applications and components and the way 
they interact constitutes the domain architecture. 
Normally components are shared in the sense that the 
services they offer are being used by several applications or 
other components. Sharing takes place both at the type level 
(code reuse) and at the instance level (data sharing). 

Reference Architecture 
The Magma reference architecture is shown in Figure 2. 
Basically it may be seen as a macro pattern for a component 
oriented domain architecture. 
The reference architecture models a software system as a 
collection of software components collaborating through 
carefully designed interfaces and supported by a 
standardized component infrastructure (labeled Comp. MW 
in the figure) providing the basic mechanisms for creating 
and destroying and communicating between components in 
a distributed hardware environment. 

Components are distinguished units that are at the same 
time units of design, construction, configuration 
management, substitution and distribution and that conform 
to and provide the realization of a set of interfaces. 
The granularity of components may vary, but normally a 
component encapsulates a collection of collaborating 
programming level objects. 
The component are classified into five main categories 
according to their role in the system: i) User Interface, ii) 
Application, iii) Business,  iv) Data storage & retrieval and 
v) IT services.  

 

 
Figure 2 The Magma Reference Architecture 

 

User Interface Components 
User Interface components are responsible of presenting 
information to the user. These are typically graphical 
components based on appropriate third party user interface 
component libraries such as Microsoft Foundation Classes 
(MFC), Java Abstract Windowing Toolkit (Java AWT) and 
Java Swing. Examples of common user interface 
components are: windows, forms, menus, buttons, grids and 
lists.  

Application Components  
Application components combine services offered by the 
business components with suitable user interface 
components into useful applications. 

Data S&R 

Comp MW 

IT services Business 

Application 

UI 

Concepts 
 

  
 &Artifacts 

 
  
 Processes 

 
  
 

Actors 
 

  
 

Applications 

  
 Components  

 

  
 

B
us

in
es

s 
 

Sy
st

em
 

 

HW  
 configuration 
 

  
 



Business Components  
Business components implement business oriented concepts 
and services and typically encapsulate business objects. 
The granularity of the business components might vary and 
is a design issue to be carefully considered. A home 
component offering CRUD (create, read update and delete) 
as well as collection operations for an entity business object 
type, is an example of a small grained business component. 
Examples are home components for entity business object 
types like customer, product, report and car. 
A business component offering more complex, real business 
services such as a mail server component are large grained 
business components. 

Data Storage and Retrieval components 
Data storage and retrieval components realise persistent 
storage of the business data. The components provide 
interfaces toward the actual underlying storage mechanisms, 
such as relational or object oriented databases. Hiding the 
actual storage mechanism through the usage of defined 
interfaces gives a great deal of flexibility as to changing 
database paradigm or product. 

IT Service Components 
The IT service components provide a diverse set of services 
needed to build software systems regardless of problem 
domain. Examples of such services are the CORBA 
services like for instance transaction service, authorization 
service or name service. 
The component categories also form architectural layers 
ordered as illustrated in the Figure 2, with the IT-service 
components forming a “vertical” layer accessible for all the 
others. 
 
 

Process Model 
The Magma  process model splits the software development 
activity into four main processes 
•  the domain engineering process, which is concerned 

with understanding the domain and designing a 
common architecture, 

•  the component engineering process which is concerned 
with developing reusable components, 

•  the application engineering process which is 
concerned with developing individual applications, 

•  the project process, which is concerned with initiating, 
coordinating and controlling engineering processes to 
achieve short term goals. 

In this paper we focus on experiences from  the initial 
domain engineering efforts and in particular the design of a 
common architecture.  
The work products of the domain engineering process and 
their purpose is illustrated in Figure 3. 

 

Figure 3 Work Products of the Domain Engineering 
Process 

 
The purpose of the Business Model is to capture the domain 
knowledge of the company 
The purpose of the product vision is to capture the needs 
and opportunities for computer based support for the 
business domain that represents the market of the company. 
Think of it as the vision of the company of the support for 
the business processes of their domain that they intend to 
offer and that they are striving to build into their products. 
The purpose of the Architecture Model is to define a 
common architecture to be obeyed by applications and 
components in the domain. The Architecture Model 
consists of: 
•  The Domain User Interface Model. 
•  The Domain Component Model. 
•  The Domain Platform Model. 
The Domain User Interface Model typically contains UI 
style-guides and other general guidelines for how to 
develop user interfaces. Its purpose is to ensure a consistent 
use of metaphors and idioms and a common look and feel 
for the applications of the domain, and to establish the 
foundation for reusable user interface components. 
The Domain Component Model serves to identify 
application and business components and the collaboration 
between them. 
The Domain Platform Model specifies the technical 
platform that the business components and applications 

Business 
Model 

 

B
us

in
es

s 
 

S
ys

te
m

 
 

Model world 
 

Product 
Vision 

 

Architecture 
Model 

 

Real world 
 



need to implement the domain oriented concepts they 
represent and the plug-and-play style configurability that 
application developers need to easily assemble applications 
satisfying the varying needs of the domain. It covers the 
component infrastructure, the IT-services and data storage 
and retrieval layer of the reference architecture.  
Seen from the business components the technical platform 
is a set of technically oriented services or mechanisms 
available to them. Seen from inside, the technical platform 
is a set of components collaborating to offer these services 
or mechanisms. 
The mechanisms that constitute the technical platform are 
typically not domain specific. Similar mechanisms are 
needed in most domains. This makes the technical platform 
a prime area for reuse of third party components. 
What vary between domains are the particular requirements 
to the platform mechanisms, which is derived from the non-
functional needs formulated in the Product vision. 

SAAM and ATAM 
In addition to the guidelines provided by the Magma model 
the architecture design was also inspired by the Software 
Architecture Analysis Method (SAAM) [?] and its 
successor the Architecture Tradeoff Analysis Method 
(ATAM) [?]. 
Both SAAM and ATAM are scenario-based design 
methods that recommend a stepwise process for the design 
effort. However we found that neither SAAM nor ATAM 
directly suited our needs, so we ended up with using the 
following set of steps, which picks elements from both 
methods: 
1. Describe scenarios that the architecture must support. 

These may be usage scenarios, system management 
scenarios or system evolution scenarios. 

2. Derive requirements for the architecture from the 
scenarios. 

3. Describe the architecture 
4. Evaluate the architecture w.r.t. the scenarios 
According to the Magma model the scenarios should be 
derived from the Product vision.  At this point we made a 
shortcut, however, and compensated for the lack of a 
modeled product vision by involving  people that  had the 
product vision in their head in the definition of the 
scenarios.  
The following scenarios were defined:  
•  Adapt the system to use a different database systems. 
•  Implement interoperation with a new third party system 
•  Adapt the system for remote use by many concurrent 

users 
•  Rapidly and cheaply adapt an application or develop a 

new one to cope with evolution of or national variation 
in  business processes. 

•  Implement support for access by a casual user, which 
cannot be expected to have installed Superior software 
products. 

From this set of scenarios the following set of requirements 
was derived: 
•  Vendor independent database system interface 
•  Support interoperability with third party systems 
•  Support multiple concurrent users 
•  Scalable  to many concurrent users 
•  Support access by casual users 
•  Support rapid application development 
 

Superior Architecture 
The chosen architecture is an instantiation of the Magma 
reference architecture. This was a natural choice, partly 
because this effort was part of a strategic move  towards 
adopting  the Magma model, but also  because the 
requirements fitted nicely with the properties promised by 
the Magma reference architecture. 
Most of the effort went into evaluating and choosing 
between available technologies for the platform architecture 
and to agree on a set of business components for the 
business component model. 
Following is a brief discussion of some of the choices 
Stateless server components to achieve scalability 
Adaptable user interface components (validity checking,)… 

The platform model 
Superior was already committed to Microsoft technology, 
so the COM  was a natural choice for the component 
infrastructure 
ADO was chosen as the interface for the data storage and 
retrieval layer. By putting an ADO interface on top of the 
current database system and letting all access to the 
database by the Business components go through this 
interface, one achieved the sought for database system 
replacability. 
There was some concern about the performance of this 
solution and some experiments with popular database 
systems were carried out. This showed that the performance 
of the chosen solution was adequate. 
In the IT-services layer, MTS was chosen for transaction 
management. 
In addition a number of utility components that could easily 
be extracted from the current applications were identified, 
for instance user management, access control  and a 
scheduler for recurrent business tasks. 
Concerning distribution issues, other experiences within the 
Magma project indicated that business components had to 
be designed either for running on the server or in the client. 



Achieving true distribution transparent components carries 
to much of a performance penalty with todays technology. 
It was decided to go for server based stateless business 
components. 
Stateless components were chosen in order to satisfy the 
scalability requirement.  

The Domain Component Model 
Between 10 and 20 business components were identified. 
Since a  proper Business Model and Product Vision had not 
been made yet, this was mainly based on analysis of 
existing applications and the vision residing in the heads of 
a few senior developers at Superior. Some of the business 
components were pretty obvious, like for instance brood 
deployment and slaughtering, and fodder management. 
Others were not so obvious. Therefore we feel that a 
reiteration of the Domain Component Model, after a more 
thorough job on  domain analysis and scoping  has been 
done, will be necessary. 
The result of the evaluation of the architecture with respect 
to the scenarios is given in tabular form as recommended by 
SAAM in Table 1.  The column labeled Intermediate Arch. 
shows the evaluation of an alternative architecture 
providing short term solutions for some of the scenarios and 
that is likely to be used as an intermediate step in the 
gradual transition to the new architecture. 
 

Scenario Superior 
Arch. 

Interm. 
Arch. 

Adapt the system to use a 
different database systems 

yes yes 

Implement interoperation with a 
new third party system 

yes partly 

Adapt the system for remote use 
by many concurrent users 

yes partly 

Rapid application development 
 

yes no 

Access by a casual user 
 

yes no 

 

Table 1: Evaluation of the architecture 
 

PROJECT DESCRIPTION 
The design of the domain architecture was carried out as a 
master thesis at the Norwegian University of Science and 
Technology, advised by SINTEF Telecom and Informatics, 
and in close cooperation with senior developers at Superior 
Systems. Prior to this the company had done several step 
towards adopting the Magma model, like for instance 
acquiring object oriented modeling capabilities and 

implementing enhancements to their project management 
process. 
 

BENEFITS AND LESSONS LEARNED 
We believe that the described component oriented 
architecture will provide the flexibility called for by the 
scenarios shaping it. This was clearly indicated by the 
evaluation against the scenarios, although it has not yet 
been demonstrated in practice. 
The main problem seems to be to find the time and 
resources to do the transition to the new architecture. 
Although ways have been found to do the transition 
gradually, it is a threat to the success of the move that it 
may take to long. 
Both in this case and in other companies that participated in 
the Magma project we have experienced that it is difficult 
to motivate business modeling and modeling of the product 
vision.  
The lack of these models did not appear to be a problem in 
the platform architecture design. The Superior developers 
had very clear ideas of the scenarios that were likely to 
impact it.  
Another observation is that they are probably not very 
domain specific, so many business domains could share the 
same platform architecture. 
As might be expected, the lack of a Business model and a 
modeled product vision it was difficult to do a good job on 
identifying business components. 
Anyway we believe that a common documented 
architecture is a very fundamental artefact in component 
based software engineering and it is felt that having defined 
and documented such an architecture is a significant step 
towards a full adoption of the Magma model. 

 
REFERENCES 
1. Bass, Len; Clements, Paul; Kazman, Rick: Software 

Architecture in Practice. Reading, Massachusetts, 
Addison-Wesley, 1998 

2. Hallsteinsen, Svein; Solberg, Arnor; Skylstad, Geir; 
Neple, Tor; Berre, Arne-Jørgen: Magma Software 
Engineering Handbook. Revision 1.3, January 2000 
http://www.ikt-norge.no/weboffice 

3. Kazman, Rick; Klein, Mark; Barbacci, Mario; 
Longstaff, Tom; Lipson, Howard; Carrière, Jeromy: The 
Architecture Tradeoff Analysis Method. Proceedings of 
ICECCS ´98, (Monterey, CA), August 1998: 68-78 

4. Kazman, Rick; Barbacci, Mario; Klein, Mark; Carrière, 
Jeromy; Woods, Steven G.: Experience with Performing 
Architecture Tradeoff Analysis. Proceedings of the ´99 
International Conference on Software Engineering, 
(Los Angeles, CA), 1999: 54-63 



 


	ABSTRACT
	INTRODUCTION
	BUSINESS PROBLEM
	TECHNICAL APPROACH
	
	Figure 1 Reference Model

	Reference Architecture
	Figure 2 The Magma Reference Architecture
	User Interface Components
	Application Components
	Business Components
	Data Storage and Retrieval components
	IT Service Components

	Process Model
	Figure 3 Work Products of the Domain Engineering Process

	SAAM and ATAM
	Superior Architecture
	The platform model
	The Domain Component Model
	Table 1: Evaluation of the architecture


	PROJECT DESCRIPTION
	BENEFITS AND LESSONS LEARNED
	REFERENCES

