
Issues in the Assurance of Component-Based Software

Gary Vecellio William M. Thomas
The MITRE Corporation The MITRE Corporation

1820 Dolley Madison Blvd. 1820 Dolley Madison Blvd
McLean, VA 22102 USA McLean, VA 22102 USA

+1 703 883-5857 +1 703 883-6159

vecellio@mitre.org bthomas@mitre.org

1 INTRODUCTION
Software is increasingly being used in systems where the
consequence of failure is high. For example, software is
being used in systems that threaten life, health, national
security, the environment, and the economy. Also, in an
effort to decrease software cost and speed time-to-market
software developers are increasing their use of COTS
software. Operating systems, middleware, software
components, and software frameworks are being purchased
off-the-shelf and included in critical applications. Yet there
are few if any ways to determine adequate software
components from inadequate ones. Nor are there adequate
ways to determine the effect that replacing software
components will have on the system’s behavior.

One of the recommendations of the President’s Information
Technology Advisory Committee (PITAC) report is to
“fund more fundamental research in software development
methods and component technologies.” The report
identifies the need for “Software methods for efficiently
creating and maintaining high-quality software of all kinds
and for ensuring the reliability of the complex software
systems that now provide the infrastructure for much of our
economy” [5]. Specifically the report calls for research to
explore and create:

x component-based software design and production
techniques, and the scientific and technological
foundations needed for a software component industry,

x techniques for using measurably reliable components
and their aggregation into predictably reliable and
fault-tolerant systems,

x theories, languages and tools that support automated
analysis, simulation, and testing of components and

their aggregation into systems, and

x techniques for aggregating provably secure
components into provably secure systems.

The concern over the use of COTS software components in
critical systems is echoed elsewhere. For example, The
National Research Council’s report [10] states:

"Commercial software packages and systems - and not
systems custom-built from scratch - are a central
subject of this report... Research that ignores COTS
software could have little impact on trustworthiness
for future Networked Information Systems. In the past,
computer science research programs serving military
needs could safely ignore commercial software
products; that course now invites irrelevance."

Recent advances in component technology are making
COTS solutions even more attractive. The increasing use of
COTS in critical and complex systems is inevitable.
Continued research is needed to assure that such systems
meet their goals. We are currently investigating issues
associated with assurance of This paper reviews standards
for COTS software in critical applications, identifies new
challenges associated with component based COTS
software, and suggests some static analysis approaches to
help address the these challenges.

2 STANDARDS FOR COTS IN HIGH-INTEGRITY
SYSTEMS

Regulatory agencies are charged with the responsibility of
establishing processes, procedures, and mechanisms that
are used to gain a appropriate level of assurance software
will perform as intended. Agencies that deal with in safety
critical domains have recognized the risks associated with
using previously developed software and have started to
address the problem. However, their actions in this area
have not been comprehensive or consistent

Using COTS software in a safety critical application has
recognized problems. Many agencies point out the issues
by few identify prescriptive actions that can be taken. The
Joint Services Computer Resources Management Group
points out some of the issues associated with using COTS

in critical applications.

"The safety assessment of Commercial Off the Shelf
(COTS) software poses one of the greatest challenges
to the safety certification of systems. COTS software is
generally developed for a wide range of applications
in the commercial market. The software is developed
to an internal company standard or to an industry
standard, such as IEEE, ANSI, or NIST. In general,
the language used is determined by the company or
the individual project team. Since the vendor releases
only compiled versions of the product, there is often
no way to determine which language is used. Because
the developer can only guess at the applications that
the software may be used in, specific issues related to
application are often not addressed during the
design." [8]

NASA's Software Assurance Technology Center (SATC)
recognizes the problem of data availability when dealing
with previously developed software. They leave the
decision up to the engineering judgement of the acquirer.

"For systems where use of this standard is required, it
shall be applied to government furnished software,
purchased software (including commercial-off-the-
shelf (COTS) software), and any other reused software
in the system. In the event that some of the analyses
required by this document are not feasible due to the
nature of the software and documentation, the
developer is responsible for securing a waiver from
the NASA acquirer of the system." [3]

The Federal Aviation Administration calls out RTCA's
Software Consideration in Airborne Systems and
Equipment Certification (DO-178B). This is one of the
most prescriptive software standards that are currently. This
standard requires that all software, regardless of whether it
was previously developed or not, meet the same high
standards. It does not specify any procedures, or
mechanisms that are to be specifically used for previously
developed software.

"COTS software included in airborne systems or
equipment should satisfy the objectives of this
document. If deficiencies exist in the software life
cycle data of COTS software, the data should be
augmented to satisfy the objectives of this document"
[6]

The Nuclear Regulatory Commission and Lawrence
Livermore National Laboratories have conducted extensive
investigations regarding the design and development of
safety critical software. The have also studied the use of
previously developed software in High Consequence
System Systems. They point out the fact that the state-of-
the-practice in software engineering doesn't well support
the use of previously developed software in systems where
there is a high consequence of failure, but they leave open
its use in systems with lesser consequence of failure.

"Given the current state of the art in software
engineering and the technical, political, and
maintenance considerations associated with typical
commercial software, it appears that it will be difficult
at best to incorporate COTS software products into
high-consequence safety systems. If an effective
grading process is in place, however, the tradeoffs
associated with the use of COTS products in lower risk
categories become more palatable." [7]

In addition, they recognize the important part the vendor
plays in the decision to use or not use previously developed
software. It should also be noted that their comment
specifically mentions programmable logic controller
vendors. In this domain the software is relatively simple.
Their comment might be less appropriate if, for example,
the domain was software for knowledge based systems.

"Is it Possible to Use COTS Software in an HCSS?
Yes. Some software vendors, such as programmable
logic controller vendors, produce software with the
knowledge that it will be used in systems with medium
to high risks. Some of these vendors use software
processes that have been designed to produce high-
integrity software. They are generally aware of the
types of hazards associated with the systems in which
their products will be used and those hazards have
been considered in their designs. In order to meet the
demands of the high-integrity marketplace, they may
be motivated to form long-term partnerships with
users and to supply additional reliability
documentation. Such vendors may well be in a
position to meet applicable acceptance and regulatory
requirements for the use of their products in HCSS’s."
[7]

In traditional software developments, assurance that the
software will function as intended is built up from several
sources of evidence. These sources can broadly be
classified as people and process, analysis, and testing [4].
There is agreement in the community that all three of these
sources of evidence are necessary for true assurance. To
date, the systems of interest to software assurance
researchers have been primarily safety-critical systems.
Typically, such systems are built from scratch with few, if
any, COTS components. As discussed above, the regulatory
community has not embraced the use of COTS software in
safety critical systems. In addition, there are still significant
questions about the cost-of COTS when used in safety
critical systems [9]. However, there is increasing interest in
expanding the use of COTS software components in
critical, if not safety critical, systems.

3 NEW CHALLENGES WITH COMPONENT
BASED SOFTWARE

Assurance of component-based software is complicated by
the fact that its development and use differs from
traditional COTS based software (e.g., libraries, operating
systems, databases, and window management systems). In

general traditional COTS software is configured for a
specific operating system / processor pair, is used in
somewhat predictable ways, and has a large user base.
Component-based software introduces new assurance
challenges that include:

x Changeable environment and dependencies–
traditional COTS software is developed for a specific
hardware and operating system specific environment.
Vendors often support multiple hardware and
operating system pairs, but the vendor knows these at
development time. Software components execute in
more abstract containers where the environment and
the dependencies are not completely determinable at
development time (e.g., dynamic class loading and
model code). It should be noted that some major
software “disasters” have been the result of changing
environments [1, 2]. Because component-based
software facilitates change it is likely to exacerbate this
problem. Techniques and tools that assist in
component dependency analysis are needed to improve
this situation.

x Variable usage – one of the selling points of software
components is their ability to be reconfigured for a
variety of uses and to undergo post development
configuration. From a functional perspective this is an
attractive advantage, but it complicates assurance. For
example, as a component’s configuration changes it
becomes difficult to extrapolate prior experience and
past testing evidence. Also, for a given system, a
component might have multiple configurations. The
identification of the configuration of each component
instance and a comparison with its assurance
arguments becomes a post development assurance
activity. Techniques and tools that assist in the
extraction of component configuration descriptions are
needed to improve this situation.

x Larger number of smaller parts – traditional systems
have utilized a small number of rather large, well-
defined COTS pieces. While the goal of component-
based systems will be to use a small number of well-
defined components to produce the desired
functionality, they can potentially contain a larger
number of less well-defined pieces. Techniques and
tools that assist in the identification of component
aggregation sets are needed to improve this situation.

x Component flux – is a problem similar to the version
creep issue associated with the use of COTS software
[9]. That is, the introduction of new versions is out of
your control of the organization using the software.
The problem is magnified with component-based
software because of the increased number of
components and connections between them. As the
number of software components in a system increases
the issue of identifying a consistent set of becomes

more difficult. Techniques and tools that assist in the
definition of component change analysis are needed to
improve this situation.

x Developer inconsistencies – similar to traditional
COTS software, by the time a software component is
used in a system the group the developed it might no
longer be together. This is complicated further when
multiple development organizations are supplying
components for the same system. Also, at present there
are no authorities that certify individuals or
organizations for the production of critical software
components. While there are steps being taken in this
direction [11, 12], meaningful advances are a decade
away. This makes assessing the people and process
difficult or impossible. Assurance is therefore best
gained through analysis and testing.

Many of the challenges of using component-based software
in critical applications can not be effectively addressed via
traditional software assurance technologies. Testing
approaches have been used for many years to show that
software will function as intended. Given that components
might not be developed by the organization using the
component, white-box testing is generally not possible.
Also, component testing is less effective when a
component’s configuration, environment, and dependencies
can be changed at integration or deployment time.
Performing component-level block-box testing can increase
assurance, but, as pointed out in [12], developing the
associated test oracles can be an expensive proposition.
System and subsystem level testing can be effective, but
they have a high associated cost, and can not cover the
entire state space for most software. This means we must
gain additional confidence through other means.

Process and personnel assessment is less useful when
multiple organizations are involved and when components
are externally developed (whether commercially or
otherwise). New, more comprehensive assurance
approaches are needed. These approaches might include the
certification of software engineers and organizations,
improved testing strategies, more fault tolerant designs, and
better analysis techniques.

At the same time the assurance picture is getting more
complicated, there are several factors are falling into place
that will better enable the development of better assurance
technologies for component-based software. Many of these
factors are related to the use of the Java programming
language and its associated Java Beans and Enterprise Java
Beans technologies to developed highly reusable software
components. These technologies are of particular
importance because they are codified in commercial
standards and support platform independence. Of interest to
us are the potential improvements that can be made in the
static and dynamic software analysis of component-based
systems.

4 STATIC ANALYSIS FOR ASSURANCE OF
COMPONENT-BASED SOFTWARE

Improvements in program analysis technologies, both static
and dynamic, can help to overcome the challenges
introduced by component-based software development.
Using static component analysis that extracts and records
relevant information from previously developed
components is a tractable approach for improving
assurance and offers some advantages over dynamic
analysis. For example:

x Static dependency and exception propagation analysis
can identify platform sensitive components.

x Characterizing parameter dependent behavior can
identify components that are configuration sensitive.

x Combining information extraction with change
analysis is a useful approach for identifying potential
version incompatibilities.

x Identifying component sets with high cohesion and
minimum coupling can form the bases for subsystem
integration like testing in component-based software.

Our approach is not to invent new analysis techniques, as
we believe there are many current analysis techniques that
can be exploited. Rather, we want to investigate extending
the currently available techniques and tools to adapt them
to our purposes.

We are investigating the following areas:

x Component descriptions – methods and techniques to
extract information from components that can be used
to make static or dynamic assurance arguments. For
example, inter-method dependencies, algorithmic
configuration dependencies, exception propagation,
and time dependent behavior. For those constraints that
are particularly difficult to analyze, we are identifying
ways to record and package off-line supplemental data
in order to enhance static analysis possibilities or to
support runtime based assurance techniques.

x Component change analysis – methods and
techniques to identify the significant semantic
differences among substitutable components. For
example, changes in exception handling, use of
threads, and use of internal data structure.

x Component dependencies analysis – methods and
techniques to identify the significant dependencies
among components and between a component and its
platform or environment. For example, interface usage,
platform dependent features, interaction closures, and
component – framework dependencies.

x Component aggregation sets - methods and
techniques to identify sets of components that exhibit
high cohesion and minimum coupling. For example,

sets of user interface, business logic, and data access
components that exhibit logical cohesion, but reside in
different architectural tiers.

These techniques will all help to address the difficulties
identified in the previous section. Updated component
descriptions that characterize environment-dependent can
help to address the problem of assurance in the presence of
a changeable environment and variable usage. Improved
change analysis techniques are needed to address issues
associated with component flux. Dependency analyses are
required alleviate difficulties with the larger number of
smaller parts and to provide visibility into the dependencies
on a changeable environment. Finally, the identification of
component aggregation sets can be used in the development
of metrics more suitable for component based software,
enabling more effective identification and remediation of
developer inconsistencies.

5 CONCLUSION
We are focusing on development of a component assurance
taxonomy, as well as information extraction and analysis
strategies. Our taxonomy will identify assurance properties
that are unique or magnified in component-based software,
and approaches supporting analysis of these properties. A
first step is the identification of analysis techniques and
approaches that can be used in the determination of these
properties. We are also investigating static information
extraction techniques that can be applied to component-
based software, particularly those written in Java. Where
applicable, these strategies will be codified in an analysis
workbench specification, a prototype analysis workbench,
and in criteria useful for the development, acquisition, and
analysis of component-based software.

REFERENCES

1. ARIANE 5, Flight 501 Failure, Report by the Inquiry
Board.

2. N. Leveson, and C. Turner, An investigation of the
Therac-25 accidents, IEEE Computer, 26(7): 18-41,
July 1993.

3. NASA Software Safety Standard, NASA-STD-
8719.13A, National Aeronautics and Space
Administration, September 1997.

4. D. Parnas, et al., Evaluation of Safety-Critical
Software, Communication of the ACM, 6 June 1990,
Volume 33, Number 6, pg. 636-648.

5. President’s Information Technology Advisory
Committee (PITAC) Interim Report to the President,
August 1998.

6. RTCA/DO-178B, Software Consideration in Airborne
Systems and Equipment Certification, RTCA, 1992.

7. J. A. Scott, G. G. Preckshot, J. M. Gallagher, Using
Commercial-Off-the-Shelf (COTS) Software in High-
Consequence Safety Systems, Lawrence Livermore
National Laboratory, 1995.

8. Software System Safety Handbook, Joint Services
Computer Resources Management Group, 1997.

9. N. Talbert, The Cost of COTS, IEEE Computer, June
1998.

10. Trust in Cyberspace, National Research Council,
Committee on Information Systems Trustworthiness,
National Academy Press, 1999.

11. Standard for Safety-Related Software, UL-1998,
Underwriters Laboratories Inc., 1994.

12. J. Voas, Certifying Off-the-Shelf Software
Components, IEEE Computer, June 1998.

