
Third International Workshop on Component-Based Software
Engineering:  Reflection on Practice.

Educational Case Study – what is the model of an ideal
component?  Must it be an object?

Pat Hall
Computing Department, The Open University

Walton Hall, Milton Keynes
England MK7 6AA
+44 1908 274066

p.a.v.hall@open.ac.uk

BACKGROUND

I have been writing material for a second-level course on
object oriented software development.  The part I have
been writing is on component-based software
development, and patterns, frameworks, and product
lines.  To begin with I wanted to set the scene by defining
an ideal component model, to break students out of the
presumption that objects solved everything.

To do this I went back to earlier work on Module
Interconnection Languages (MILs), following the
ground-breaking paper by DeRemer and Kron (1976) but
also drawing on other material from that stream of
research, in particular the survey paper ten years later by
Ruben Prieto-Diaz and Jim Neighbors (1986).  This is an
approach I have taken regularly in review articles of the
area over the past two decades, for example in Hall
(1999).  Thus I see, and have always seen, it important to
be able to treat component interfaces as first class
elements, to break these up into coherent parts,
distinguish between provided interfaces and required
interfaces, and the need to make component
interconnection a completely independent activity from
component definition and implementation.  I commented
on the shortfall that I see in OO approaches.

As a matter of routine practice we send out drafts to
critical readers, and my draft was sent to seven people,
some of whom are very experienced practitioners, and
others who are experienced educators.  I got some
surprising comment!  Basically my critics believed that
objects, particularly in the form of JavaBeans, are the
ideal component.  They could not engage with my view
that making explicit the required interfaces is as
important as making the provided interfaces explicit.
Provided interfaces are equated with specification, a
Good Thing.  One claimed “OO has a longer history than
Software Engineering ... in the guise of Simula 67, OO
was, according to Bertrand Meyer ... predates Software
Engineering by a few years”.

It seems that the OO line is being swallowed, and that
line is limiting our perceptions of what a component
should be.  If the view I have taken is right, then we

should be actively be reforming OO models.  Of course it
could be that current CBD methods do do the right thing.
But I have yet to find a proposed method that does –
D’Souza and Wills(1999) and Jacobson Griss and
Jonnson (1997) do not.

Here is the gist of my current explanation.

Begin Quotation

DEFINING THE IDEAL COMPONENT

Figure 1 illustrates the idea of components using an
informal notation looking like electrical components with
wires joining them.  The white boxes are the components.
A large outer component is shown composed of two
interconnected inner components.  Each component has a
number of interfaces shown as shaded boxes: required
interfaces are the boxes with ‘pins’ called ‘plugs’,
provided interfaces are shown without pins and called
‘sockets’.  Interfaces of the same ‘type’ are shown with
the same shading and dimensions as in the box at the
bottom of the diagram.  Interconnections are shown as
‘wires’ connecting a required interface of one component
to the provided interface of another component, or to
some interface of the encapsulating outer component.

Figure 1.  Components and their interconnection.

The critical point to note is that components have a
number of points of interconnection: each point could be
termed an ‘interface’, with some of these interfaces being
provided for other components to use, while other



interfaces are required from other components.
Components are completely ‘encapsulated’: there is no
way of doing anything with a component other than by
using its provided interfaces.

This gives a set of requirements for any method of
specifying and implementing components, which are:

❑  a component can have a number of interfaces,
which must be able to be named and defined
separately,

❑  each interface consist of a coherent set of
operations, each of which can be separately
identified, and specified with the input and output
parameters named and typed.  Together these are
the signature of the interface.

❑  interfaces that provide the services of the
component are called the provided interfaces,

❑  the interfaces of other components that are required
to complete the services of the component must also
be defined explicitly.  These are called the required
interfaces.

❑  the only way that a component can interact with
other components and the rest of the software is
through these interfaces.  There can be no hidden or
private connections.  This idea that an interface can
only be used through its public interfaces is known
as encapsulation.

❑  the actual processing carried out by the component
should in principle be capable of complete and
unambiguous specification independently of any
actual implementation of the component.

❑  Other components and software that uses a
component may only rely on the defined interfaces
and specified operations; no assumptions may be
made about the implementation.  This idea that no
knowledge of the internal workings of a component
can be used is known as information hiding.

What is required for component interconnection is:

❑  components can be interconnected to create a larger
subassembly or ‘super-component’, thus making a
component a recursive construct.

❑  required interfaces are connected to provided
interfaces explicitly.

❑  interfaces that are connected together must match
signatures, that is they must have the same
operations with the same input and output
parameters.  (This can be relaxed a little to permit
matching under inheritance rules.)

❑  some interfaces can be hidden as internal to the
super-component, while others are made external
and visible outside this super-component.

❑  additional ‘glue’ code can be inserted between
components to enable simple conversions to match
interfaces where type substitutions are not
sufficient.

Taken together these are an exacting set of requirements
that several module interconnection languages have met,
but no widely used programming language has ever met.

Example 1.1 shows a simple component built out of sub-
components.  Example 1.2 shows the simple component
of Example 1 Figure 2, built out of sub-components,
designed using UML.

Example 1.1
We are developing software for timetabling courses in a
computer training school.  Let us start by considering the
requirements and from these develop a component model
in the style of Figure 1.1.

We have identified that we will be concerned primarily
with lecturers and classrooms and student-cohorts.  All
classrooms will be equipped with computers and a digital
projector.  We will need to timetable each of these, but
also specialist devices like video players.

There are three basic “things” here:

❑  a Resource which can be a lecturer, classroom, or
video player,

❑  a Schedule which allows us to determine when a
particular resource is available or in use, and

❑  a Course, which brings the appropriate resources
together for the appropriate length of time.

We will make each of these into a component, but before
we can draw the component diagram, we need to explore
the requirements a little further.

When we timetable a Course, we will need to find out for
each resource required what its availability is and then
select dates that suit all the resources involved.  This
timetabling could happen through interaction with a
person who proposes dates, then checks that the
resources are available, and then decides on particular
dates.  However the timetabling could also happen
automatically: at this point we are not too concerned.
This timetabling capability could be part of the Course
component, but we will make a separate Allocation
component that creates a new Course when asked to do
so, and then timetables it.

Second, let us consider Schedules.  Let us develop the
interfaces required for the Schedule component further.
We will need a set of facilities for checking the
availability of a resource, and a set of facilities for
reserving the resource for particular dates.  At this point
we do not need to consider in detail the actual functions
of these interfaces.  We may also want to cascade
Schedules, so that the availability of a resource may be
determined not only by its own schedule, but also by
other constraining Schedules.  For example, the
availability of a lecturer is determined not only by his/her
own commitments, but also by public holidays and by
any company constrains like fixed closures over
Christmas or annual conferences.

A Resource and a Schedule are intimately connected, and
we will consider a composite of these as a Schedulable
Resource.  This leads us to the Component model in
Figure 2 –note the rather more formal notation, still
distinguishing between provided and required interfaces.



Figure 2.  The generic Schedulable Resource
components built from generic Resource and
Schedule components.

The model of Figure 2 is highly generic, so let us now
look at TTS, the timetabling system, built from these
components for our client CTS, the computer training
school.  This is shown in Figure 3 which gives a partial
instance diagram for CTS when it has 3 classrooms, 2
lecturers, and 2 courses.  The Allocation object records
within it the current courses and resources, and requires 3
interfaces, one for creating Courses, one for checking the
availability of Resources and the other for reserving
Resources once a set of appropriate resources has been
found.  We also see the cascading of Resource Schedules
so that when the availability of any Resource is checked,
that Resource in turn checks for more general constraints
imposed by company closures, public holidays and
weekends.

Figure 3.  The generic Schedulable Resource
components built from generic Resource and
Schedule components.

Example 1.2
Let us now decide how the implement the component
shown in Figure 1.2 and describe that implementation in
UML.  In principle we would like to make the heart of
the component an object, but how do we make the
interfaces explicit?  A class’s interface is a single
collection of the provided operations that cannot be
divided into subsets.  We want to be able to divide up
that interface so that we can control what can be
connected together.  And we also want to be able to make
explicit the required interfaces.  So a first shot might be
to make all the interfaces, both provided and required,
into classes as well, with the components themselves

being packages.  The connection between classes is
shown by the realises relationship, where we are
broadening what this means.  (Note that we could have
used UML stereotype <<interface>> for the provided
interfaces.)

Figure 4 shows this for the component Schedulable
Resource, while Figure 5 shows the result for the
Resource component, where the interfaces are
decomposed into their constituent operations.

Figure 4  UML design for the Schedulable Resource
component.

Figure 5  UML design for the Schedule component.

The interfaces are very simple.  In the provided interfaces
the implementation of the operations consists of the
invocation of the operation that realises it.  For required
interfaces, in the implementation of the component,
instead of invoking an operation outside the component
the operation of the required interface class is invoked.
Then to connect a component to another component the
required interface operations are implemented to invoke
the required interface of the other component.

End Quotation

THE OPEN QUESTIONS

What is the ideal component model?

If this ideal is not an Object in the current OO sense, then

Schedulable Resource

setSchedResDetails

checkSchedResAvailability

initSchedRes

getSchedResDetails

reserveSchedRes

getConstraints

Resource Schedule

G

I

S
C

IS
I

G

S

Schedule
initSchedule

newSchedule()

getSchedule

getAssignment()
isFreeDay()
isFreePeriod()
firstFreeDay()
firstFreePeriod()

ConstrainedBy

isFreeDay()
isFreePeriod()
firstFreeDay()
firstFreePeriod()

scheduleDetails

days

newSched()
getAss()
isFreeD()
isFreeP()
firstFreeD()
firstFreeP()
setD()
setP()
opname()

setSchedule

setDay()
setPeriod()



how can OO approaches be developed to embrace this
ideal?

Does it really matter?

REFERENCES

Barroca, Leonor, Jon Hall, and Pat Hall (1999) (Eds)
Software Architectures. Advances and Application.
Springer.

Cox, Brad J. (1986) Object-Oriented Programming
Addison-Wesley. ISBN 0-201-10393-1

De Remer, F and H.H. Kron. (1976) “Programming in the
Large versus Programming in the Small”, IEEE
Transactions on Software Engineering, June 1976,
pp312-327

D’Souza, Desmond  and Alan Cameron Wills (1999)
“Objects, Components, and Frameworks with UML.
The Catalysis Approach”.  Addison-Wesley 1999.

Hall, Pat (1999) Architecture-driven Component Reuse”
Information and Software Technology, vol 41 no 14,
15 November 1999. pp963-968

Jacobson, Ivar, Martin Griss and Patrik Jonsson (1997).
Software Reuse.  Architecture, Process and
Organisation for Business Success.  Addison-
Wesley

Prieto-Diaz, Ruben and James Neighbors, (1986)
“Module Interconnection Languages”, Journal of
System Sciences, vol 6, no, 4, November 1986. pages
307-334.


