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ABSTRACT

Most software-component research has been directed at functional specification of software components. The other,
equally important, side of the coin is component quality. We present a foundational theory of reliability based on
components. The theory describes in principle how component developers can make measurements that are later
used by system designers to calculate — without implementation and test — system reliability. The theory is a
”microscopic” one that describes in detail how component properties are reflected in systems designed using those
components.

1 PITFALLS OF
SOFTWARE COMPONENTS

Software components are the most promising idea extant for the efficient design of quality software systems. Most of
the research in components is devoted to specification, design, reuse, and cataloging of the components themselves.
The complementary issue – component quality – is also important, but has received less attention. There are no
accepted standards for the quality of software components, largely because there is no theoretical foundation on
which to base standards. Developers of safety-critical software, and the regulatory agencies responsible for the
systems they design, use mostly subjective assessments of software quality. It would be of great value to replace
these with hard data.

In electrical and mechanical engineering, components are described in a handbook, where each has a “data
sheet” entry. Its data sheet describes what a component does, and equally important, it gives constraints that allow
the system designer to decide if the component is “good enough” for the application. For mechanical components,
these constraints concern, for example, the life expectancy of the component. Software is embedded in systems with
mechanical and electrical components, systems designed using component techniques from these other branches of
engineering. The system designer using an embedded software system would like the software components to have
data sheets.

Without the solid information of a data sheet, software components may be no bargain. To buy off-the-shelf
software of unknown quality is only to trade the difficult task of assessing your own work, for the more difficult task
of assessing someone else’s.

Software reliability theory [10] is a candidate for describing “quality” on a component’s data sheet, but it cannot
be applied without addressing a central problem. Whereas reliability of mechanical components depends on their
physical environment, and can be given without regard for the expected usage so long as that usage remains within a

1A short abstract describing some of this work appeared in ISSRE ‘99, Boca Raton, FL, Nov 1999; it was also used in a position paper
for Workshop-12 in OOPSLA-99, Denver, CO, Nov 1999.
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tolerance range, software reliability depends critically on usage, in the form of the so-called “operational profile.” A
component developer must use some profile to test and certify a component, yet when that component is embedded
in a system, the profile it sees will be different, invalidating the component test. The profile seen in the system
depends on the details of system design, and can be very “spikey,” so no standardized test profile can be justified.

Section 3 proposes a solution to this profile problem.

2 FOUNDATIONAL THEORY

Our theory uses statistical reliability as the quality information to appear on a software-component data sheet. The
other side of the components’ coin – the technical description of what a component is supposed to do – is of equal or
greater importance, but it is not part of the theory. However, the component developer must have an effective oracle
to carry out statistical testing, and it is here assumed that a formal specification supplies this oracle [15].

The problem of system reliability from component data has been studied for more than 20 years [9, 7, 8, 5,
6]. Perhaps because a straightforward analysis seems overwhelming, these approaches all model components and
systems in some abstract, “high-level” way, for example, as a Markov chain. In contrast, the approach taken here
is fundamental and direct: the failure behaviors of components and system are analyzed in full detail. Microscopic
theories like this one are the most satisfying in explanatory power, and the easiest to experimentally investigate, but
they may be difficult to apply in practice without supporting tools.

2.1 Basis of the theory

To be useful in system design, component data sheets must contain technical information sufficient for the system
designer to make reliability calculations; and, it must be possible for the component developer to collect this infor-
mation at a reasonable cost. Subjective assessments derived from the software development process do not qualify
as data-sheet information, because they amount to no more than assertions that the developer is trying to do a good
job. For example, stating that the developer uses a careful inspection process is no help in calculating statistical
reliability. A current pre-standards study group on component quality is almost exclusively using such subjective
measures [1]. The reputation of the developer is not an inconsequential factor in selecting a component; but, its role
should be to convince the designer that hard technical data can be believed.

A statement that (say) for a certain user profile a component’s reliability is better than1 � 10�4 per execution
with an upper confidence bound of 99%, is a statistical assertion that there is no more than 1 chance in 100 that it
will not perform according to the specification in 10,000 trials using that profile. The reader of a data sheet might
doubt that the developer has actually established such a precise technical claim. But this is a question that can be
answered scientifically, and if the developer has lied there are legal remedies.

This theory is based on two ideas:

Profile mappings. Operational profiles must be taken into account when measuring component parameters for a
data sheet. Since the component developer cannot know how the component will be used, and hence what
profile it will face as part of a system, the data-sheet information must take profile as a parameter. That is, the
data sheet specifiesmappingsfrom profile to reliability parameters [12].

Component subdomains.A component has a natural partition of its input space into functional subdomains, and
the practical description of its operational profile is as a vector of weights over these subdomains. This form
for the operational profile allows the developer to test a component within these subdomains without knowing
the profile, whose arbitrary weights may be applied later [3].

2.2 Component and System
Development Process

In outline, the process of making and using components is perceived as follows:
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� The component developer defines a set of natural subdomains for an implemented component.

� The component developer measures properties of the component for each subdomain.

� The component developer publishes a data sheet listing its subdomains, and giving mappings of profiles ex-
pressed as weightings over them.

� The system designer decides on a system structure utilizing components.

� Using the data sheets for prospective components the system designer calculates the system reliability for a
given user profile of the system.

� If the necessary system reliability is not achieved, better components must be selected or the system structure
changed.

3 OPERATIONAL PROFILES

When the quality information on a component’s data sheet is statistical, it must be obtained by random testing. The
fundamental problem of assessing component quality statistically is that any profile from which test inputs are drawn
will notmatch the profile that the component will experience when placed in a system. Furthermore, the profile seen
by a component depends not only on the system input profile, but also on the component’s position in the system
and on the actions of the other components there.

We propose a solution to the profile problem as two data-sheet profile mappings (one for reliability and the other
for profile transformation) defined using a subdomain decomposition of the component input domain. A system
designer can use these maps to predict the system reliability before implementation.

3.1 Profiles Defined on Subdomains

A profile P is a probability densityP : D ! [0; 1], whereD is a discrete input domain. In practice, it is very
difficult to obtain profile data from software users. The best that can be done is to describe a profile as a histogram
of probabilities over quite broad classes of inputs [13]. We exploit this idea as a standard form for profiles.

Let a componentC have input domainD, partitioned inton disjoint subdomains,

D = S1 [ S2 [ :::[ Sn:

Let each subdomain have its own profilePi, and its own probability of failurefi:

fi =
X

x2(Df\Si)

Pi(x);

whereDf is the subset ofD on whichC fails andPi is the profile within subdomainSi. The overall profileP
for the component may be expressed as a normalized vector of probabilities thateach subdomain will occur in use:
P =< h1; h2; :::; hn >. In the practical case, the profile is literally user-defined: a person estimates the likelihood
that various inputs will arise. Such a person is hard-pressed enough to make estimates of subdomain weightingshi,
and can usually say nothing about distributionsPi. Thus within the subdomains there is no justification for other
than a uniform distributionPi = 1=jSij. Hence:

fi =
jDf \ Sij
jSij :

In the sequel, a profile will always be a normalized vector of weightings applied to a set of subdomains.
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3.2 Data-sheet Mappings

The two mappings on a component data sheet give the system designer the ability to calculate the reliability of the
component wherever it is placed in a system, and to calculate the way in which its input profile there is distorted to
an output profile. Thus these mappings are defined in terms of a profileP =< h1; h2; :::; hn >. The system designer
uses them to propagate profiles through the system structures being tried out.

Reliability Mapping. The reliability mapping carries a profile vector to a real valueR 2 [0; 1], the probability that
the component will not fail on an input drawn according to this profile. To give this mapping on the data sheet,
the component developer estimates the failure ratesfi within each subdomain using random testing. Then

R =
nX

i=1

hi(1� fi): (1)

Given this mapping (that is, given thefi) and a profile (thehi), the system designer can calculateR, the
component reliability under that profile.

Profile-transformation Mapping. The profile-transformation mapping carries an input profile vector to an output
profile. It is important that the latter be expressed as a weighting vector over anarbitrary set of subdomains
U1; U2; :::; Um, unrelated to the subdomains on the component data sheet, since such a set of subdomains will
describe some following component in a system design. Let the weightings of any output profile be

Q =< k1; k2; :::; km >

on subdomainsUi. Eachkj is the sum of the contributions from each input subdomain,

kj =
nX

i=1

hi
jfz 2 Sijc(z) 2 Ujgj

jSij
; (2)

wherec is the function computed by the component.

The system designer, given an input profile for a component (thehi), the component itself (to calculatec), the
Si from the component’s data sheet (which can be randomly sampled to estimate membership in the numerator of
equation (2)), and the desired subdomain breakdown for output (theUi for a following component), can use equation
(2) to transform a profile through a component, that is, to mapP into Q. This construction is at the heart of our
theory. In the sequel it will be called thebasic composition construction.

3.3 System Design – an Example

Here is an example illustrating the calculations a system designer can make during design using components, using
the basic composition construction.

Consider two functional software componentsA andB in sequence.A’s input profile is presumed available
from the previous component;A invokesB, passing its output asB’s input. For this part of the analysis, the system
designer needs to compute the reliability of the sequenceA;B.

In order to keep the example simple, suppose thatA andB both take a single integer parameter limited in
magnitude to216 � 1, and thatA computes the functionf(x) =

pjx� 13j. SupposeA’s data sheet lists three
subdomains:

A1 = fnjn < 0g; A2 = f0g; A3 = fnjn > 0g;
with failure rates of .01, 0, and .001 respectively. SupposeB’s data sheet has four subdomains:

B1 = fnjn � 0g; B2 = fnj1 � n � 10g;
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B3 = fnj11 � n � 100g; B4 = fnjn > 100g;
with failure rates of .1, 0, 0, and .02 respectively. (The data sheet measurements are obtained by the component
developers using exhaustive testing on the small subdomains, and by uniform sampling that exposed no failure on
the large subdomains. Finally, suppose that the input profile toA is the weighting< :3; :1; :6>.

The system developer calculates as follows:
The reliability ofA alone is:

RA = :3(1� :01)+ :1(1� 1) + :6(1� :001) = :896

from equation (1).A’s profile-transformation mapping can be used with the subdomains fromB’s data sheet as the
Ui in equation (2), to calculate the profileB will see. (This is the basic composition construction.)A carries 0 top
13, so the second ofA’s subdomains maps entirely to the second ofB’s subdomains. Sampling uniformly with

1000 values in each of the two otherA subdomains, the fraction ofA outputs falling inB’s subdomains are:
Subdomain fromA1 fromA2 fromA3

B1 0 0 0
B2 .003 1.0 .002
B3 .147 0 .162
B4 .850 0 .836

(For simple numerical functions likeA’s, all of the fractions in equation (2) can be found analytically, but in general
sampling and executing the component will be required.) Putting these numbers in equation (2):

k1 = :3(0)+ :1(0)+ :6(0) = 0

k2 = :3(:003)+ :1(1:0)+ :6(:002) = :102

k3 = :3(:147)+ :1(0)+ :6(:162) = :141

k4 = :3(:850)+ :1(0)+ :6(:836) = :757

So the profileB sees fromA is< 0; :102; :141; :757>, andB’s reliability is:

RB = 0(1� :1) + :102(1� 0)

+:141(1� 0) + :757(1� :02)

= :986

The system reliability of the sequence is finally calculated asRA � RB = :896(:986) = :883.

4 SYSTEM DESIGN

To make calculations of system properties from component properties, the system designer must not only have
the component data sheets, but needs to try various system designs that satisfy the system requirements. In trying
designs, there are two technical problems:

“Glue logic.” Any system will contain explicit code that invokes its components, perhaps first adjusting parameter
values and later combining their results as needed, and perhaps performing significant computations unrelated
to any component. These pieces of “glue logic” have to be analyzed along with the components. Glue logic
is handled by converting system code to fragments that act like independent components [16]. Section 5.1
indicates the necessary transformation.

System control flow. Components are invoked in patterns that come from the top-level control structures in the
system design, the ”main program” in a conventional programming language. These patterns are handled
by providing an algebra of the constructions of sequence, conditional, and looping. Section 3.3 illustrates
the sequence case. Conditionals can be handled exactly using the basic composition construction separately
for the two branches. Loops are more difficult; they require the system designer to iterate the conditional
construction until the profile being propagated back into the loop has sufficiently small weight.
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Our theory suggests that glue logic should be kept as simple as possible, with as much complexity as possible
pushed off onto the components. This shifts the burden of testing and analysis to the component developer, who
stands to gain by creating a quality component. Even the simplest control structure will require a good deal of
calculation to analyze, so tools to help the system designer will be essential.

5 COMPONENT INDEPENDENCE

The problem of component independence takes two quite different forms.
First, components’ data sheets are developed in isolation, and cannot be expected to describe dependent behavior.

So the system calculations require that this independence be preserved. The usual subroutine-calling mechanism
incorporates the reliability of the called routine with that of the caller. When X calls Y in a conventional language,
X depends on Y to return properly and to produce correct results. If Y fails, X fails. Thus there is no sense in
which Y has a reliability independent of X. Transforming profiles through components can also introduce a subtle
dependence. These dependencies can be eliminated or allowed for in conservative approximations.

The second question of independence arises only in systems that use redundant components to achieve a higher
reliability than that of the components themselves. The question of coincident failure [4] then becomes crucial. This
very difficult problem is not yet addressed by our theory.

5.1 USES vs. INV

Parnas [14] has characterized the relationship of one routine calling another, by a pair of alternative predicates:

USES(C;D) if and only ifC callsD andC is considered incorrect ifD does not function properly.

INV(C;D) if and only ifC passes control toD but is indifferent to whatD does.

If USES(X,Y), then the reliability of component X will incorporate the reliability of Y and their reliabilities are
intertwined. The relationship needed for independent components X and Y is INV(X,Y).

When X is a component (or main program) calling component Y, their usual relationship is USES(X,Y). To
transform to INV(X,Y) requires that the calling program be separated into fragment X1 before the call, and X2 after
the call. X1 ends by invoking Y, passing it proper parameters, but also passing X2. When Y is ready to return, it
instead invokes X2. Details of this fragmentation differ depending on the control structure of X. In effect, the calling
of components treats the system design as if it were itself made up of artificial components invoking each other and
the “real” components.

Components themselves can be analyzed into fragments, but for simplicity in this explanation, components are
restricted to subsystems that make no outside calls. In this way the component developer’s job remains estimation
of properties of self-contained units, while the system designer’s job is calculation based on system structure. The
proper level at which to make the component/system distinction is an open question.

5.2 Sequential Case:
Conservative Calculations

Even when components invoke, rather than use, each other, a subtle dependence may be created by the profile that
the invoking component provides to the invoked component. If A invokes B and A is incorrect, a false profile for
B will be calculated by the basic composition construction, and thus B and A are not independent. Although we
have done some preliminary work on this problem and found ways to estimate B’s profile so that the reliability
computations err only in the direction of safety, further investigation is needed.
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5.3 Redundant Case: Design Diversity?

System designers use the set of “structured” control constructions to keep intellectual control of a design. From
a quality standpoint, however, all uses of sequential control compromise reliability. When two components are
combined, the combination is subject to the failures of both. The sequence can in fact magnify the failures of the
second component to an arbitrary degree, since the profile it inherits may emphasize the points where it fails. (The
opposite can also happen, but still the combination has the failures of the first component.)

To buy back reliability lost in sequential design, or simply to gain system reliability better than that of its com-
ponents, requires the use of parallel, redundant system structures. A “voting” structure repeats a computation three
or more times and compares the results, the majority being taken as the answer. (This scheme is sometimes called
“Multi-Version Programming” or MVP.) If redundant computations are done by two components whose failure rates
arefA andfB , then if their failure behavior is independent, the system failure rate is the productfAfB (equivalently,
the reliability is1� fAfB = RA + RB � RARB). By using enough independent components, an arbitrarily good
reliability can be obtained in principle. Given the impracticality of testing software to safety-critical levels [2], the
use of parallel components is the only way that (for example) commercial aircraft flight control programs can meet
their safety requirements.

Unfortunately, it has been experimentally observed [4] that MVP does not realize the expected product decrease
in the failure rate, because in practice the redundant routines have coincident failures — they arenot independent.
Furthermore, it is impractical to determine by testing if the problem exists.

The investigation of coincident failures and design of sound schemes for redundant computation is the most
important unsolved problem in high-reliability computing. Our theory sheds a little light on the situation. Imagine
that two algorithms executing in parallel with their results to be compared, are themselves made up of components.
Consider a coincident failure of the two. They begin with a common input, and end with a common (failed) output.
However, along the way the computations may differ, and it is the hope of advocates of “design diversity” that
enough difference will make coincident failure less likely. In our model, diversity can be quantitatively described:
The two computations are intuitively different if the subdomains invoked at each interface differ.

6 FUTURE WORK

A plausible theory is the first step on the road to achieving system quality based on component quality. However,
any theory must be validated, and then put into practice.

6.1 Experimental Validation

A microscopic theory lends itself well to empirical validation, which can play also play a role in the theoretical
development.

Most experimental software research is very difficult to perform. Software development is a complex process,
and different applications are developed in significantly different ways. So the investigator seeking to validate a
technique faces an extensive, hard to control environment, and has difficulty characterizing “typical” projects for
study. The paradigm of theoretical hypothesis suggesting pointed experimental work that suggests changes in theory
– the physical-science model that has been spectacularly successful in physics, for example – does not work well for
software theories.

However, for a microscopic theory like this one the physics paradigm does apply. Any particular piece of soft-
ware is made up of components, which can be identified ex post facto, and data sheets derived for these components.
Assuming any particular system operational profile, the theory can be used to calculate system reliability. Then
the system reliability can be measured using conventional random testing with the assumed profile. Comparing
the measured value with that calculated from component values provides an overall check of the theory. A single
system can be the source of many validation experiments, by varying the system input profile, and by varying the
granularity of the units chosen to be its components. Furthermore, if there are discrepancies, such an experiment
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contains intermediate information to help track down the source. Instrumentation of the system under test will yield
the profiles induced at each component, for comparison with those calculated from the theory.

The expected result of such experiments would be disagreement between calculated and measured reliability,
which would pinpoint failures to be corrected in the theory. So-called “toy” programs, usually uninformative about
software issues, are the best subjects for revealing experiments. Beginning programming textbooks are a good source
of programs, and simple UNIX command implementations are another. A preliminary experiment reported in [11]
used the UNIX ‘grep’ program. It was the source of improved understanding of “glue logic,” and yielded promising
results.

Pointed, revealing experiments are part of the development of a sound theory. Validation of the theory that
emerges must be performed on larger systems, with all the attendant difficulties of software experimentation. Large-
scale validation will require good supporting tools.

6.2 Application to Practice

Our theory assumes that component developers will prepare data sheets, and that system designers will use them
to select “good enough” components and to evaluate system designs. In principle, the necessary work can be done
by engineers using existing tools and hand calculation. However, if there is to be substantial use of the theory in
establishing an accepted method of component development and system design, the existence of specific tools will
be important in convincing engineers to use the theory. We plan to develop research prototypes of the necessary
tools, in parallel with experimentation described in section 6.1.

Tool Support for Component Developers

To create a data sheet for a software component, its developer needs to identify appropriate subdomains, and then
to perform conventional random testing within them. Existing software-reliability tools (which do little more than
organize test data and evaluate the formulas for predicted reliability) are adequate for this work. It will probably be
useful to create a cosmetic interface directed at the component developer.

Tool Support for System Designers

It is the system designer who needs practical help applying this theory. Even a simple system structure requires
many applications of the basic composition construction of section 3.2. It may be necessary for the system designer
to try a number of system input profiles, and a number of trial designs, thus repeating these many constructions.
Although the calculations are straightforward, they can be extensive, because a brute-force implementation of the
basic composition construction uses equation (2) with random coverage of subdomains.

A supporting tool would take as input a system control structure, an assumed operational profile for the system
in the histogram form, a collection of components’ data sheets, and the executable components themselves. It would
then use the basic composition construction to map the system input profile through toeach component in turn,
calculate its reliability in place, and combine these component reliabilities into a system reliability.

In using the basic composition construction, such a tool is doing almost all the work of executing a small random
testset on the proposed system. Only the glue logic of the main control structure is not executed. It might therefore
be worth investigating the possibility of completing the execution and using an oracle to verify that the results are
correct. This addition would have two advantages: (1) It would solve the problem of loop calculations in a brute-
force way; and (2) It would allow the system designer to verify that data-sheet information is roughly correct, by
comparing differing components placed in the same system design.

Even the best theory is a long way from practice and an industry standard. But however much standards are
needed, useful ones cannot be devised without underlying theory. The process begins with sound theoretical work,
widely discussed in the software-engineering community.
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