
Applying CBSE theory on corporate resources

Niklas Eriksson Ted Vaalundi
ISBIT AB ISBIT AB

Kopparbergsv. 14 Kopparbergsv. 14
722 13 Västerås Sweden 722 13 Västerås Sweden

+46 (0)21 171920 +46 (0)21 171920
niklas.eriksson@isbit.com ted.vaalundi@isbit.com

ABSTRACT
Currently, there are a lot of articles written on the
theoretical side of CBSE, but these theories in general did
not reach the state of practice. There are still too many
problems to which this paper presents a practical case
where CBSE technologies and methods are applied to
different assets in a corporation. We discuss how we, as a
small consultant company, have chosen to deal with some
of the CBSE problems. We feel that the term software-
component must be expanded so that we can use it to
encapsulate those assets, not just binary software. We will
also introduce a “component environment”, a prototype for
handling different types of components

Keywords
CBSE, Component, CM, Software Reuse

1 INTRODUCTION
Component Based Software Engineering (CBSE) or
Component Based Development (CBD) is thought to be the
future of software development. At least if we should judge
by all articles that are published by the software
development community. We constantly learn about
different component technologies, component concepts and
component models. We read about how different
components can be glued together into different types of
applications. This sounds easy, but still we do not find too
many implementations and support where these concepts
can be used in everyday development.

We have been working with the COM[1] technology for
about four years in different software projects. We have
also been involved in a lot of Configuration Management
(CM) issues around this topic. Our experience of CBSE is
that the concept is very immature regarding CM- and
Quality Assurance (QA) -issues. Software companies must
understand what CBSE is and how to take advantage of it.
Several companies that we have worked for do not want to

use any component technology simply because they do not
understand CBSE and the consequences of how CBSE will
affect the development cycle of a project. Many companies
are still implementing software as monolithic applications
and thereby neglecting the power of CBSE.

ISBIT AB is a small software company that mainly works
with software consulting. Our area of interest is modern
software engineering focused on industrial applications. To
strengthen our competitiveness we, as software consultants,
need an effective way to reuse knowledge and distribute
information in our organization. However being a
consultant company we are in a different situation
compared to ordinary software companies. Working with
different technologies and different concepts, reusing
knowledge in a practical way is in fact quite difficult. Is
there a way to solve this?

This article will discuss and summarize some of the
problems raised during our work with different CBSE
technologies. We will also discuss the work of a CBSE
related project called ISBIT Component Environment
(ICE). Can corporate assets be modeled as components and
why is there a difference between developing and using
components? As a proposed solution, we describe the
requirements behind ICE and the underlying architecture.

1.1 ICE – ISBIT Component Environment
In order to explain our point of view and some of the
assumptions mentioned in this article we intend to use the
ICE-project as a practical example of how CBSE can be
used in a powerful, yet corporate-friendly way.

The ICE-project started as an idea about software reuse in
the end of 1998 at ISBIT AB, Sweden. The goal with ICE
was at first to gather, maintain and develop a C++ class
library that would contain various functionality needed by a
software developer developing COM-components. During
our work with implementing COM-components we often
found ourselves reinventing different functionality over and
over again. Reuse of binary components was not enough.
We needed a way of reuse corporate specific source code
with functionality that was not part of none of the libraries

mailto:ted.vaalundi@isbit.com

STL, ATL or MFC1. We needed a corporate framework for
implementing components.

As the work with ICE grew, we soon realized that we
needed to extend ICE to incorporate other programming
languages than just C++. We also needed to incorporate
binaries and even knowledge. Along with the source code
and binaries, we wanted to add test-programs and examples
implemented in different programming languages. But how
could this be achieved since ICE until now had been
considered as a framework for C++ programmers only?
The component concept was soon identified as a solution.
But could we consider a C++ class as a component? Or
event more abstract, could we consider knowledge as a
component? The entire idea with ICE was about to change.
Today ICE contains both source code and binaries such as:

• C++ classes

• Visual Basic modules

• Delphi VCL2 components

• ActiveX controls

• HTML/XML-support such as behaviors,
cascading style-sheets and etc.

• ICE CM-tools such as B.A.D (Build And
Deployment), Documentation tools, Scripts etc.

2 COMPONENT GRANULARITY
Consider the following statement for one moment:

“A component is an asset that can be reused”

By defining a component like this we automatically neglect
the fact that one might use components to achieve
scalability and modularization instead of reuse. The
primary goal of implementing a component may not be the
reuse in itself. The choice of implementing an application
based on components may very well be influenced by
scalability and modularization requirements.

We think that software developers must consider
components differently regarding the level of abstraction
that they are working with. Take the hardware industry as
an example. In the hardware industry components such as
semiconductors, capacitors, inductors and resistors are used
at the lowest level of abstraction. From these basic
components integrated circuits are built which must be

1 STL, ATL and MFC are different C++ class libraries.
STL is short for Standard Template Library, ATL is short
for Active Template Library and MFC is short for
Microsoft Foundation Classes.
2 VCL is short for Visual Component Library and is a class
library used in Borland Delphi and Borland C++ Builder.
VCL is implemented in Object Pascal.

considered as the next level of abstraction. Further more
advanced circuits are built from the integrated circuits as
complexity grows for each level of abstraction.

Considering the software industry, we can apply the levels
of abstraction here too. For example: Compare the work of
a software developer that implements device drivers with a
software developer that implements user interfaces. The
software developer that implements device drivers are
probably programming in ANSI-C with its standard library
along with some kind of Software Development Kit (SDK)
for device driver development. Can we consider the ANSI-
C standard library as a component? Can we consider the
device driver SDK as a component? Can we consider the
result (the device driver itself) as a component? The
software developer that implements user interfaces works
on a different level of abstraction. For this kind of work
Visual Basic and different kinds of ActiveX controls can be
used to implement the user interfaces wanted. Can we
consider a Visual Basic module as a component? Can we
consider different ActiveX controls as components?

From our point of view the definition of a component is
different depending on the level of abstraction. We call this
component granularity (compare this to Szyperski [7]). If
you are working with C++, a class may be considered as a
component. If you are working with Visual Basic an
ActiveX control may be considered as a component. But
what about interfaces and contracts in our discussion? Is
this not an important part of the component concept? Of
course it is. We think that interfaces and contracts are
merely a secondary aspect on witch rules and constraints
for updating and changing interfaces must be applied in the
CM-process for CBSE. For example: during an iterative
development cycle, changes of requirements often result in
changed interfaces. Doing this must be allowed as long as
the component is not released as a product. Once the
component has been released as a product the author(s) of
the component has no control over the usage of the
component. This means that bugs and errors may be
corrected as long as the interfaces aren’t changed. If an
interface needs to be changed or updated, the work of this
must be carried out so it complies with the rules of the
component model used.

3 TWO “SIDES” OF A COMPONENT
From a corporate point of view it is often not enough to
gather components in a repository and then use them.
Especially since a company usually develops and maintains
components of its own. There are many issues to consider
whether you are using a component or if you are
implementing one.

In reality several components may be incorporated in the
same package in order to simplify the deployment of
components. If we consider the Windows operating system
we soon realize that we are using different parts and
components of the operating system depending on the

application that we are developing. The operating system is
a package that contains a magnitude of different
components, some of which has dependencies to each
other.

Figure 1. The Windows operating system contains
several components yet in one package. A
user only uses the components that he/she
needs.

If we look at the COM-technology a COM-server3 can
contain several COM-components. This scenario is
illustrated in Figure 2 where a component named
AxTypeLib is used. The AxTypeLib component has
dependencies to three other components: AxInterface,
AxDispInterface and AxCoClass. These three components
may be accessed directly, or through the AxTypeLib
component. For easy deployment and distribution of these
particular components all the components are packed in one
module (in this case a DLL4) called AxDolphin.DLL.

Figure 2. From a deployment point of view it may
be practical to deploy components that
have tight dependencies in one package.

3 The COM specification specifies three different kinds of
servers: In-process servers, local servers and remote
servers. A server is a module that hosts components. In the
Windows operating system in-process servers are dynamic
link libraries (DLL) while local- and remote servers are
executable files (EXE).
4 DLL – Dynamic Link Library.

In this case a DLL hosts four COM-
components.

Can we apply the above component-concept when using
C++? Consider the illustration in 0. Here we have an
example of several C++ classes that are hosted in a class
library. Some of the C++ classes have dependencies to each
other, and that makes them suitable to distribute together.

Figure 3. A C++ class library with dependencies
and inheritance relations. In this case it is
practical to deploy and distribute the
entire class library instead of separate
C++ classes.

3.1 Consumer/Producer side of component reuse
What we wanted to illustrate in Figure 1, Figure 2 and 0 is
that we can apply our discussion of the granularity, and the
two sides of a software-development, on components. We
also wanted to illustrate that components are handled
differently regarding usage and deployment. If we consider
components in this way all components has two “sides”,
one regarding usage and one regarding storage and
deployment as shown in Figure 4. We like to refer to the
left side as the consumer side and the right side as the
producer side. The consumer side illustrates the use and
reuse of components that resides in a repository. The
producer side illustrates the version handling system where
the source code of each component resides. The B.A.D
builds and deploys each component and installs the
component in the repository. In the rest of this article we
will focus our discussions around the producer side, which
also is what ICE is all about.

Windows operating system

DirectX

MS
Internet
Explorer

Active
Directory

AxDolphin.DLL

Dependencies

AxInterface

AxTypeLib

AxDispInterface AxCoClass

ICE Base C++ Class Library

CHashTableT CListT

CPersistBase

CBlob

CFileIO

CPersist

Figure 4. The consumer/producer side of
component reuse as depicted in ICE.

As far as the consumer side in Figure 4 is concerned we
have looked at some existing databases/repositories for
components such as Microsoft Repository, Code Librarian
in Microsoft Office, Microsoft Visual Component
Manager[1]. INSEAS[3] and Agora[4]. We have tested the
Microsoft Visual Component Manager in close relationship
with ICE and are quite satisfied with its functionality.

By dividing the handling of components like this we
separate the usage of components from the development,
maintenance and B.A.D processes. This provides us with
the choice of using different applications, utilities and tools
when using components as consumers. A very important
goal with B.A.D is to use feedback from the consumer side.
This might for example be bug-reports and registered usage
of components. We will go into more detail about this in
4.2.2.

4 THE ICE-PROJECT OBJECTIVE
The functionality of a component should reflect the
requirements of it. This is quite obvious since this should
be the case of all software that is developed for commercial
purposes. In our previous discussion about component
granularity we haven’t, until now, said anything about
requirements although it seems like a very important issue
here. Like our perceptions about component granularity we
also think that requirements are different regarding the
level of abstraction. We call this requirement granularity.

We think that it is just as important to trace requirements in
component-based software as it is in traditional software.
This may in fact be considered as an important requirement
on software components and software applications
generally. The reason why we mention this in this article is
that the requirements play a very important role in ICE
regarding the architecture (see chapter 5).

4.1 Requirement model used in ICE
In order to get a comprehensive set of requirements, we
invented three different user-roles: boss, guru and client.

These user-roles define the top requirements that are
brought upon ICE from different viewpoints. The goal with
this approach was to produce a set of general requirements.
Each general requirement was then broken down into
several concrete requirements. If the requirements still were
too abstract to reflect some given functionality, the
requirements could be further refined. This finally
produced a hierarchy of requirements for the different
levels of abstraction. The approach gave us an easy way to
ensure that each function realize its requirements since we
were able to trace the function all the way through the
requirement- hierarchy.

One thing we learned during the definition and breakdown
of the requirements was that a requirement that seemed
obvious perhaps was not. The thing we discovered was that
many of the requirements that we first defined, was in fact
consequences of the top-requirements. So, one future
research issue here may be to look at how requirements are
defined.

4.1.1 Boss
The boss user-role impersonates the requirements that a
company or organization has on ICE.

Figure 5. Requirements of the “boss” user-role.
4.1.2 Guru
The guru user-role impersonates the requirements that a
software developer implementing components has on ICE.
If we refer to our previous discussion in chapter 3 about the
two sides of a component, these requirements mostly

Version handling system

Use/
Reuse Database/

Repository

Build And Deployment

(B.A.D)

Source code

MS Repository, Code
Librarian, VCM,

INSEAS, Agora …

Binaries

Knowledge base

Boss

“Quality Assurance”
The project must conform to the ISBIT QA-rules.

Boss

“Reuse”
A client must use a software module included in ICE if it is
applicable. Only if the type of software module doesn’t exist, a
new one may be developed.

Boss

“Do not steal”
No part of ICE should contain “stolen” or “extracted” code
from other products.

Boss

“No 3rd party software”
3rd-party software should not be included in ICE

Boss

“Styleguide”
The ISBIT Style-guides must be used.

reflects the requirements of the producer side.

Figure 6. Requirements of the “guru” user-role.
4.1.3 Client
The client user-role impersonates the requirements that a
software developer using components has on ICE.
Referring to our previous discussion in chapter 3 about the
two sides of a component, these requirements mostly
reflects the requirements of the consumer side.

Figure 7. Requirements of the “client” user-role.
4.2 Organizational problems related to CBSE
One thing that we have learned working with CBSE is that
it is very important that all people within a corporation
using CBSE, understands the consequences of it. We have
already mentioned this in the introduction of this article.
The introduction of CBSE in a company will affect the
entire organization [5]. However it seems very difficult to
motivate changes to an already well-trimmed organization
simply because of programmers want to reuse components.

4.2.1 ICE project group
In order to administrate the ICE project, the project itself
needed an organization. Several of the requirements in ICE
simply could not be implemented with some fancy tool.
Therefor the ICE project group was formed to handle
several CM related issues such as:

Guru

“Software Quality”
All “released” code and examples must be approved by a
“guru”.

Guru

“SPOF”
No single person may fix bugs or in any other way modify
released code without the assistance of a guru.

Guru

“Sample++”
Examples should be written is such way that even
if the client cannot use the example itself, he/she
can use the ideas in the example (think of design
patterns).

Guru
“Traceability”
It must be possible to track who uses a specific software
module, so that the client can be notified when bugs are fixed
and/or functionality is changed.

Client

“Target”
A client must be able to easily identify what software is
relevant for a specific operating system and development
environment.

Client

“Quick Start”
There should be samples of the intended use.

Client

“Usage”
All pieces of code must be properly documented.

Client

“Installation”
It must be easy to install

Client

“Duplicated Functionality”
If a software module duplicates some standard functionality
(for example, if you look at an ICE string class, it should be
stated how this class differs from the MFC or STL string
classes) it must be stated.

Client

“Dependency”
If a software module requires and 3rd party software, it must
be stated.

Client

“No Bugs!”
A released software module must hold “good quality”

• Version handling

• Change request handling

• Build and deployment

• Verify requirements against functionality

In a large organization you might want to consider dividing
this group into several groups/boards (compare this with
SCM and SCCB in CMM [6]).

Figure 8. ICE project group requirements.
4.2.2 B.A.D
The build and deployment function is a vital part of ICE.
Consider Figure 8 below and you will see the requirements
for the build and deployment function. Both Independency
and Plug-in Architecture are derived requirements not fully
explained in this article. However here is a short
explanation:

• Independency. Since we are working with several
different platforms and systems we must be able
to change the plumbing.

• Plug-in Architecture. Since the information associated
with components may differ between abstraction levels
and/or component models we must be able to extend
B.A.D. For example in the future someone may want
to associate a ”ToDo-List” with some components.

Figure 9. Build and deployment requirements.
As we discussed in 3.1 we need a way to interchange
information between the two sides. Because both sides can
consist of several different tools and information systems
we can use the plug-in functionality in B.A.D to achieve
this. To exemplify this, there are many products on the
market that handle a specific CBSE issue. Rational
ClearCase is an excellent version-handling system. Visual
Intercept is a great system for handling change-requests.
These kinds of products are a necessity to any type of
modern software development, component-based or not.

5 B.A.D ARCHITECTURE
In this chapter, we will try to describe the overall
architecture of the “build and deployment”-part (B.A.D for
short) of ICE. The goal of the architecture is to make the
components easily maintainable while allowing maximum
flexibility when defining the components and packages (see
chapter 3).

5.1 A Small Example
To better understand the
problems that the
architecture is dealing
with, we start off with a
small example. First,
take a look at the
description of the
component and package
hierarchy (to your right).
As you know (see
chapter 3), a package
can consist of several
components. To make things easier to handle, we probably
need to group the packages in some way, which introduces
the subsystem. A subsystem is simply a slot where you, as
CM responsible, place packages that are related. This
makes it easier to get an overview of your components
(especially in large systems). The Capability Maturity
Model [6] defines Configuration item/Configuration
component/unit as the corresponding structure.

Below you see snapshot of a small part of ICE. This does
look a lot like an ordinary directory structure, with one

System ->
Subsystem

Subsystem ->
Subsystem* Package*

Package ->
 Component*

(Component ->
Item*)

Boss

“Reuse”

Boss

“Do not steal”

Boss

“No 3rd party”

Client

“Duplicate
 functionality”

Guru

“Software
 Quality” ICE Project Group

Independency Client

“Installation”

Guru

“Traceability”
Build and Deployment

Plug-in Architecture ICE Project Group

directory representing each subsystem/package/component.

Figure 10. Snapshot of the ICE structure
5.2 The Model
Now that you know how the component hierarchy is used,
we can go on with the architectural discussion. Think about
the hierarchy of the packages and components again. When
dealing with software, a component would normally consist
of a number of files. One obvious solution would be to let
each component, package and subsystem be represented by
a directory on the file system. You could then put a small
file in each directory stating which type that particular
directory represents. The drawback with that simple
solution is that some of the information might not be
consisting of files. For example, you might want to use
your expensive change-request system to keep track of
changes to make for each component.

The first step from the file system would be to create an
automation model5 of the component structure. A client

5 The term “automation model” refers to a set of COM

would then access the components via the model instead of
looking at the file system. An UML-type description of the
model can be seen in (Figure 11).

Figure 11. UML-model of the component hierarchy
The standard approach is then to create an application that
the user interacts with. The application would interact with
the model and the model could use files or whatever other
source of information necessary to perform its task. You
might recognize this as the standard three-tier solution (see
Figure 12). Note that this opens for web-deployment of the
user-interface and all the other advantages that you would
normally expect from this kind of design.

Figure 12. The three tiers of B.A.D
5.3 Inside the model
The real challenge, as you might have expected, is inside
the model. We want the automation-model to do all the
work for the client, and that is probably quite much. The
components will usually be version-handled and consist of
information from different sources. To make things even
worse the components might be version-handled in
different version systems. If we want the automation-model
to be flexible and possible to reuse in several projects, we
need a more general approach6. To make this solution more
concrete we propose a framework.

Again, we set the stage for a small example. This time we

objects that support OLE Automation (or just Automation).
6 A smart person once said that you could generalize any
problem by introducing one extra step of indirection. Some
skeptic then mentioned that you could optimize the
program by removing that level of indirection.

ICE

C++

Base

vector

map

Win

thread

BAD

BAD Model

BadModel

BAD UI

BadUI
Components

ICE Support

System

Subsystem

Subsystem

Subsystem

Package

Package

Component

Component

Component

Component

Package

Package

Component

Subsystem

11 1 1
*

Package Component

Item

Database

User Interface

Model Version
Handling

user

put focus on a part of one of the packages in ICE, namely
the “win-package”. For simplicity, win consists of only one
component called “thread”, and thread consists of four
items. You find a birds-eye
view of that scenario to your
right. This all looks simple,
but there are more to this
that meets the eye. The first
two items in the thread-
component; “thread.h” and
“thread.cpp”, are both files
in a version handling
system. The dependency
item in this case, can be
figured out by analyzing the source-files, and the reported
bugs are situated in a separate database. This gives us a bit
more complicated picture, 0.

Figure 13. Thread component example – behind the
scenes

To make it possible for each item of a component to be
fetched from different sources, we need a uniform way to
do that. Introducing the supplier. A supplier is a COM-
object that fetches information from a source that is only
known to the supplier it self, and returns it to the caller. In
the example, we would have three different suppliers:

• File-version supplier. This supplier would know
how to communicate with the version-handling
system, and get the proper version of the thread-
files.

• Dependency supplier. This supplier would scan
the thread-files for dependencies (being C++ files,
the dependency-supplier would be C++ specific).

• Bug supplier. A supplier that can fetch the bug
reports for a component from the bug-database.

So the component object in the automation-model would
use the different suppliers to know what items belongs to
the component and use them to handle the users requests.
But one question remains; how does the component know
which suppliers to use? The beginner’s answer to the
question might be “from the configuration properties
associated with the component object”. But since we are
searching for a neat design the answer is “behold the meta-
supplier”. Associated with each object in the model, there
is a meta-supplier. The only job of the meta-supplier is to
keep a list of the other suppliers associated with the specific
object (see Figure 14).

5.4 Supplier types
There are two basic types of suppliers; meta-suppliers and
suppliers. As you might have noticed in the example above
(especially 0) the non-meta-suppliers are denoted
“InfoSupplier”. There are currently three non-meta-

Figure 14. Thread component example – detailed view

thread
thread.h

thread.cpp
dependency

reported bugs

Win
thread

Bug Database

Win
thread

thread
thread.h

thread.cpp
dependency

reported bugs

Version Handling
System

thread.h
thread.cpp

Win
thread

thread
thread.h

thread.cpp
dependency

reported bugs

Package
MetaSupplier

MetaSupplier
InfoSuppliers

InfoSupplier
Components

Component
MetaSupplier

MetaSupplier
InfoSuppliers

InfoSupplier
Items

InfoSupplier
Items

InfoSupplier
Items

“thread”

“thread.h”
”thread.cpp”

“dependency”

“reported bugs”

VSS

thread.h

Bug DB

suppliers:

1. Info-Supplier. This type of supplier provides items
to the other suppliers and the user. On a
subsystem, the info-supplier would state the
packages belonging to the subsystem and so on.

2. Build-Supplier. The build-supplier provides
information and functionality usable when
building the components and packages. For
example, a C++ component might have to be built
using a specific compiler.

3. Deploy-Supplier. This supplier knows which files
and items that are important when deploying the
components and packages. For example, a VB
project representing an ActiveX control contains a
lot of files interesting when building the ActiveX,
but the DLL created is the only file needed when
deployed (and that one was not even there before
we performed the build).

6 CORPORATE ISSUES ON CBSE
In a software corporation, the most obvious area of reuse is
the software development itself. Treating software as
components should increase reusability and hopefully boost
productivity. Developing general components or full-
fledged functionality is however very expensive [7], and
common practice tells us that one individual project cannot
afford to do this. Therefore we have found that it is
important to “announce” intended functionality as soon as
possible, so that several projects can work together and
thereby dividing costs, making them affordable. To make
this effective, it requires support from the entire
organization.

1.1 Resources are components
Our intention is to treat
all kinds of resources as
components. For
example there are
several resources in a
corporation that could
benefit from reuse.
Some of these resources
can be directly
associated with the
software components
themselves, tips and
tricks and so on. Other
might not be associated
with individual
components such as
design-patterns.

We can also see that some resources can be modeled as
components although not from the reuse point of view. One
example of this kind of resource can be the people working
in the company. As illustrated in the figure we can see that

even if the level of abstraction increases, we can still apply
the concept of components. In order to make things a little
more concrete, we take a look at the coworker modeled as a
component.

6.1 The two-faced consultant
Something very common in consultant companies are
“consultant profiles”. This is a document much like your
normal “CV”; a summary of things you have done and
things you are good at. This document is handed out to the
potential customer as marketing material for the individual
consultant. A big problem here is that there is a lot of
information that the company would like to keep track of,
but the customer should not know about. For example what
a consultant thinks a different customers.

If you take a step back and think of a person as a
component, you might see that the problems when
choosing a component for your project is quite similar to
selecting a consultant for your project. You need a
description of its abilities, cost, timeframe and so on. If
people were modeled as components, then we could use the
same techniques on them as on software components.

There are several aspects of human resources that can be
compared to software components, however some can’t.
Furthermore there are restrictions on the way we can use
the human components. For example: there is only one
physical instance of a person. There can also be different
problems regarding human components. For example: It
can be very difficult to grade the level of knowledge if we
try to model abilities (C++ programming, UML
modeling… etc) as interfaces.

7 CONCLUSION
We all praise the myth of reuse, and in particular software
reuse. A software component is a piece of reusable
software, but our experience tells us that the reuse-issue is
much bigger then that. Regardless of whether we are
developing an application that uses components, or the
component itself, we reuse non-component software. There
are even tools that are intended help with this particular
problem (e.g. Code Librarian, shipped with Microsoft
Office 2000). Our experience is that it is easier to reuse
small components than large. So it would be a mistake to
base the reuse on components only, when there is so much
more information that could be shared. Of course, creating
a “tips and tricks” database probably won’t make a good
marketing thing (you write a book instead and get filthy
rich, but that is a different story). However a smaller
company could benefit from reusing information on all
kinds of abstraction levels.

As we have already stated, when striving for maximum
productivity, we often want to reuse both small code
snippets as well as larger solutions. To be able to handle
different kinds of resources in a uniform way is a big
advantage, though it is not an easy task. As the first step,

A
bs

tr
ac

tio
n

People

Design Patterns

FAQ/Tips n’ Tricks

IE5 Behaviors

ActiveX components

C++ classes

Assembler routines

the ICE project tries to expose the reusable assets in our
company by applying the CBSE theory. Here are the main
drawbacks derived from the ICE project:

• Convincing the management that the initial costs
for a framework like ICE will pay off in the long
run is very hard.

• The B.A.D framework is based on COM and
Windows NT. This means that we must port the
framework if we want to use other development
platforms (e.g. Linux).

• Many types of reusable assets in a company are
not easily mapped to components. For example,
applications and utilities. A big problem with this
is that it can take a lot of effort to make the actual
mapping, thus wasting a lot of time and money.

• Making the B.A.D framework general enough to
accept all types of “components” will make it very
complex and difficult to extend. The trick is to
find a good balance between what should be
mapped to components and the framework
adaptation.

8 REFERENCES

[1] The Component Object Model Specification.
URL: http://msdn.microsoft.com/library

[2] Microsoft Visual Component Manager. URL:
http://msdn.microsoft.com

[3] INSEAS – Intelligent Search Agent for
Software Components. Seoyung Park, Chisu
Wu.

[4] Agora: A Search Engine for Software
Components. Robert C. Seacord, Scott A.
Hissam, Kurt. C. Wallnau.

[5] Human, Social and Organizational influences
on Component-Based Software Engineering.
Douglas Kunda, Laurence Brooks.

[6] The Capability Maturity Model. Mark C. Paulk,
Charles V. Weber, Bill Curtis, Addison Wesley
Pub Co, ISBN: 020 154 66 47

[7] Component Software, Beyond Object Oriented
Programming. Clemens Szyperski, Addison
Wesley Pub Co, ISBN: 0-201-17885-5

	ABSTRACT
	Keywords

	INTRODUCTION
	ICE – ISBIT Component Environment

	COMPONENT GRANULARITY
	TWO “SIDES” OF A COMPONENT
	Consumer/Producer side of component reuse

	THE ICE-PROJECT OBJECTIVE
	Requirement model used in ICE
	Boss
	Guru
	Client

	Organizational problems related to CBSE
	ICE project group
	B.A.D

	B.A.D ARCHITECTURE
	A Small Example
	The Model
	Inside the model
	Supplier types

	CORPORATE ISSUES ON CBSE
	Resources are components
	The two-faced consultant

	CONCLUSION
	REFERENCES

