
Case Study: Global Combat Support System - Air Force

Robert C. Seacord
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

+1 412 268-7608
rcs@sei.cmu.edu
ABSTRACT:
This case study describes the use of components to
modernize legacy systems. The Global Combat Support
System for the Air Force (GCSS-AF) seeks to modernize
base level support systems into integrated systems that are
responsive to Air Force needs during war and peace time.
GCSS-AF mission areas include: Logistics, Finance,
Personnel, Medical, Business Information and Functional
Information Systems. The modernization efforts seek to
maintain or improve current capabilities and reduce life
cycle support costs without degrading current operations.

Keywords
Legacy systems, modernization, components, COTS.

1 BUSINESS PROBLEM
The GCSS-AF system is a system of automated information
systems (AISs) requiring varying degrees of
interoperability and information sharing [1].
A major focus of the GCSS-AF system is to
specify and develop theses AIS as
interoperable systems from conception. The
overall goals of the program are to:

• make data available

• minimize AIS development, operation
and maintenance costs

Essential to the development of an AIS is a
robust, efficient, maintainable, extensible
architecture and associated services. The
benefits of rehosting these legacy
applications to this framwork were viewed in
terms of lower cost of ownership as a result
of:

• Using component based architecture

• Reusing infrastructure and framework components

• Eliminating expensive bottlenecks

• Eliminating stovepipe operations and duplication

• Lowering maintenance costs (software and hardware)

• Leveraging enterprise licenses management

• Reducing interface management (via standardization)

• Implementing centralized system administration

• Realizing economies of scale across systems through
improved efficiency of resources

2 TECHNICAL APPROACH
The GCSS-AF system architecture is used as a baseline for
new AIS development and as an optimal end-state for
modernization efforts. The GCSS-AF system architecture
shown below, illustrates three major categories of
components—Web GUI logic, and interface—and the
primary information flows between these categories [2].
These components reside within the application framework
and depend on technical services provided in the integration
framework.

Services supporting the three technologies (CORBA, MOM
and COM+) are provided in the integration framework layer.
The application framework layer provides reusable business
components and the business component framework that
implements the mechanism for communications among
business components. The frameworks define the
architectural layers and capabilities that AIS developers use
to implement their requirements. A developer must first
define an AIS Architecture that is compliant with the GCSS-
AF system architecture by selecting from the available
services and business components available within the
framework layers. If the required components are not

External/
 Legacy
 Systems

Platform
Specific
Comm

Application Framework / Business Components

Integration Framework / Technical Services

Web GUI
Components

Security
Services

Data
Services

Authentication
Request

Credential

Identity, Authority
Validation

Service Request such as Print,
CORBA, MOM, Others

Business Service Request

Ad-hoc Query, Predefined
Reports, OLAP

Message Request

URL or
Application

Distribution
Services

Presentation
Services

Store/Retrieve

Logic
Components

Interface
Components

GCSS-AF
User

Desktop
Service
Request

available, then additional components are defined either as
unique AIS components or common components to be added
to the appropriate framework.

The definition of software component is used in GCSS is
based closely on Clemens Szyperski definition [3] in that a
software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently, is self-contained, and is sufficiently specified
to be usable by third parties.

The unit of composition for a component is defined by the
content of a component and the results of analysis of the
factors that contribute to the definition of the component.
The contents of a component may include class libraries
(C++, Java, 4GL); encapsulated software modules (ActiveX
controls, JavaBeans, CORBA services); framework
environments (OAG’s OAMAS, IBM’s San Francisco);
CASE models; and prebuilt (COTS, Legacy) applications.

3 PROJECT DESCRIPTION
Version 1.2 of the GCSS-AF integration framework was
completed in October of 1999 and consisted of CORBA
services; limited security including SSL, single-sign-on,
role-based access and some PKI support; message oriented
middleware (MOM); and data services included support for
Business Object Documents (BOD) [4]. Version 2.0 of the
framework is scheduled for completion in March 2000 and
will add expanded data services and security services as well
as integrating Enterprise JavaBeans.

An initial pilot project is underway to migrate a legacy
system to the 1.2 version of the integration framework. This
effort has not yet completed, but initial indications are that
the modernization effort is quite costly.

4 BENEFITS
As the principle goals of the componentization and
modernization effort are to make data available and to
reduce maintenance costs it is too early to demonstrate any
benefits from the effort.

5 LESSONS LEARNED
The existing GCSS integration framework includes both
CORBA and MOM services. In ensuing versions of the
framework both EJB and COM+ will be added. Each of
these middleware components provides overlapping
services. Determining which services to use, and how best to
use and combine these varying middleware services is a
necessary part of the design process. We have found that the
use of model problems to learn about products in a particular
problem context is essential to the design process.

The cost of modernizing the legacy system has proven to be
quite high. In general, it is not possible to find developer
who have experience in both the technology used in the
legacy system and in the technologies dictated by the use of
the integration framework. It is prohibitively expensive to
maintain the right kind and level of competence in the face
of new and emerging products and technologies.
Competence must be developed when and where it is
needed.

The integration framework is a moving target. As large areas
of the framework were undefined during the development of
the project pilot, decisions had to be made “on the fly” as to
how these services would be provided or problems
addressed. Having identified these gaps, the integration
framework team can now best consider how to resolve these
problems. Unfortunately, if these solutions are different from
the ones adopted by the pilot project the “modernized”
system would need to be retrofitted to these changes or
remain non-conforming with the GCSS-AF infrastructure.

6 REFERENCES
1. GCSS-AF System Requirements Specification, Version

2.0 Document No. GCSS-REQ-1997-0001.

2. GCSS-AF Architecture Overview, Version 2.1 Document
No. GCSS-REPORT-1997-0010.

3. Component Software Beyond Object-Oriented Program-
ming, Clemens Szyperski, Addison-Wesley, 1998l

4. White Paper: Plug and Play Business Software Integra-
tion The Compelling Value of the Open Applications
Group, Open Applications Group, July 1999.

	ABSTRACT:
	Keywords

	1 Business Problem
	2 Technical Approach
	3 Project Description
	4 Benefits
	5 Lessons Learned
	6 REFERENCES
	1. GCSS-AF System Requirements Specification, Version 2.0 Document No. GCSS-REQ-1997-0001.
	2. GCSS-AF Architecture Overview, Version 2.1 Document No. GCSS-REPORT-1997-0010.
	3. Component Software Beyond Object-Oriented Programming, Clemens Szyperski, Addison-Wesley, 1998l
	4. White Paper: Plug and Play Business Software Integration The Compelling Value of the Open Appl...

	Case Study: Global Combat Support System - Air Force
	Robert C. Seacord
	Software Engineering Institute
	Carnegie Mellon University
	Pittsburgh, PA 15213
	+1 412 268-7608
	rcs@sei.cmu.edu

