
A Component-Based Development Case Study

Jim Q. Ning

Andersen Consulting
3773 Willow Road

 Northbrook, Illinois 60062-6212, U.S.A.
+1 847 714 2537

jim.q.ning@ac.com

Project Background

The client referenced in this paper is a global machin-
ery manufacturer who currently goes to market through a
global network of dealers. The client supplies these deal-
ers with many disparate systems which include:

♦ Custom-built, AS/400 “green screen” core systems
♦ PC-based systems
♦ Corporate 3270-based systems

The client wants to create a stronger extended enter-
prise by linking customers, dealers, and the corporation
through the use of technology. To deliver this vision of an
extended enterprise, the systems listed above need to be
integrated, modified and enhanced.

Component Technology Objectives

To build the systems of the extended enterprise, the
client selected component technology as a key enabler.
The client believes that components will help to deliver:

♦ An open architecture

♦ Better systems engineering and easier maintenance

♦ Ability to transparently re-locate processing in the
future

♦ Business that is developed once and reused across
applications

♦ Universal access

Architecture Overview

The project featured in this case study is currently de-
livering the first in a series of a component-based appli-
cations. This application is being built on a 3-tier cli-
ent/server architecture that uses the AS/400 for the server
platform. The overall architecture is shown in the dia-
gram below.

The Java-based operationally thin-client, which is
hosted in Internet Explorer, communicates with server-
based business logic through the DE-Light (an IBM mid-
dleware product that supports DCE) RPC gateway. The
client invokes operations on Business Event Controllers.
The Business Event Controllers collaborate with Entity
Components to complete an operation. The Entity Com-
ponents interact with the database through Data Access
Modules.

Web Browser & Java VM

Any 32-bit OS

Web Server
DE-Light Gateway
Windows NT Server

AS/400 & OS/400

DBS+ Server Architecture

Data
Access
Module

(C/COBOL)

Entity
Component

(C++)

Data
Access
Module

(C/COBOL)

Entity
Component

(C++)
User

Interface
(Java) Server Proxy

Window
Control Logic

(Java) Business
Event

Controllers
(C++)

R
P

C
 A

pp
lic

at
io

n
S

er
ve

r(
s)

D
C

E
 R

P
C

RPC calls to
external systems

TC
P

/IP

stateless, one request/response pair

DE-Light
Classes

TC
P

/IP

Lessons Learned

Development Lessons

♦ Use most experienced resources on design

♦ Design by business functions, not by architectural
layers

♦ Code shells improve productivity, but they do not
help to develop programming skills

♦ Mapping to an existing data model is difficult

♦ Use variability analysis effectively to forecast future
requirements

♦ Component packaging is complicated by dependen-
cies between components

♦ Component development tools are immature

♦ Vendor-provided training (on C++, Java, etc.) is not
enough

♦ Coordinating changes is more difficult

Architecture Lessons

♦ Budget more (and resist to cut down) on architecture
work

♦ Define architecture early

♦ Prototype a vertical slide of the application

♦ Java-based thin clients are difficult to implement

♦ Integrating Java applets with other desktop applica-
tions is difficult

Performance Management Lessons

♦ Performance is impacted the most by application de-
sign

♦ Excessive data conversions when integrating various
technologies and platforms can lead to performance
problems

♦ Code shells can lead to performance problems

♦ Excessive encapsulation can lead to performance
problems

Testing Lessons

♦ Testing is harder if development was done by archi-
tectural layers

♦ Use automated testing as much as possible

♦ Debugging is difficult and tools must be used

♦ Testing efforts should happen earlier in the develop-
ment lifecycle

♦ Component dependencies impact testing

Project Management and Estimating Lessons

♦ Extra contingency must be planned

♦ Iterative development must be well managed

♦ Project tracking can be more granular

♦ There are more artifacts to manage and impact analy-
sis is harder

♦ Plan on spend more time to refine the build process

Client and Team Organization Lessons

♦ Managing client expectations is more difficult since
visible results come later than usual in component
projects

♦ Component technology impacts client's IS organiza-
tion

♦ Organizational communication overhead is signifi-
cant

♦ Plan to overstaff the development team

♦ Greater collaboration between development team
members is necessary

♦ Use a matrixed team organization

♦ Separate programming lead and project management
roles

♦ Designate full-time resources to legacy integration

♦ Use outside contractors for programming skills only

