
���������
	���
���������������������	�� � ���!�#"%$�&���&��('%��)*����+,�.-/� � �����,01���������/
����32/��'%�.2/���4�5�
R&D Department Department of Computer Science Department of Computer Science

Seresco, S.A. University of Oviedo University of Oviedo
C /Matemático Pedrayes, 23 C/Calvo Sotelo S/N C/Calvo Sotelo S/N

33005 Oviedo, Spain 33007 Oviedo, Spain 33007 Oviedo, Spain
+34 8 5235364 +34 8 5103394 +34 8 5103396

guticr@seresco.es labra@lsi.uniovi.es cueva@lsi.uniovi.es
guticr@arrakis.es

687:9<;>=*6@?A;
In spite of the continuous improvement of the development
processes and methodologies, the generalised construction
of reliable software is still to come. Not only because many
of the recommended engineering practices are not
sufficiently applied, but also for the lack of available
techniques to achieve the desired robustness. In many real-
world cases, the formal specification and verification
techniques developed so far seem too abstract and
intimidating to developers.

In this paper, a component-based approach for improving
the reliability of software development is presented. First,
the problem and its proposed solution are stated: a
discussion is made about the role of components as a
potential new way for building B
C3DEDGFHB
IKJ�LEM<J�BHC3N�OPIQDGR�BHITSKCUN
software.

A generic component model for this purpose is defined,
under the restrictions of conceptual simplicity and real-
world potential applicability. This generic model is then
instantiated at different abstraction levels related to the
development process.

The model serves as a means of expressing constraints for
the components; a specific component lattice produces a
constraint lattice which can be statically evaluated to find
mismatches and potential errors.
VXW!YUZ8[�\!].^
Components, component model, software verification,
component specification, contracts.

_ `Ea8bdc8egfAh8iAbd`jega
bdk.l*m/n
o3p<qKlHr
Building reliable software is a very difficult task, a task
whose achievement by the software development
community is still far. Even in an ideal scenario where
requirement collection or requirement changing problems
(and any other human-factor ones) are completely ruled
out, the technical construction process itself is a challenge.
Due to the intrinsic high complexity of software [2], and
due also to the discrete nature of software systems, a small
mistake (in any of the development stages) which goes
beyond the different testing filters can lead to global system
crashes or unpredicted behaviour.

It is well known that many of the quality problems
associated with software arise from human and economic
factors, such as changing requirements, excessive time
pressure, bad engineering practices, poor quality
management and the like [8]. But the intrinsic difficulty of
the technical process of building software (from coding up
to system integration) should not be underestimated.
s�tHu�vxwTy�w{z3|}u3~���z3~Q��y�w{z3|��
Usually, the possibility of defects arising from the
construction process itself is undertaken by means of
testing techniques. Test cases are carefully prepared to
verify the behaviour of complete, running elements, with
the help of sound methods and heuristic criteria, in order to
verify anticipated error-prone situations.

In some sense, this is essentially a brute-force approach.
Not because test cases are randomly generated –in fact,
they are not; they are very specific artefacts-, but because
test cases verify the behaviour of finished entities, and this
has proven to be difficult; many defects can remain
unnoticed. In combination with testing, some way of
detecting defects early, during the construction process
itself, should be provided. It is theoretically impossible to
completely verify a computer program, but some work can
be done to improve early error detection.

Taking a computer program and automatically looking
through it in order to verify its behaviour is, stated that
way, an extremely difficult task. But similar problems are

2

solved in other engineering disciplines. The main
difference is that software systems are usually poorly
described and specified at construction time. The key to
early error detection lies in specification models that allow
the automation of the verification, but whose use is suitable
in a real-world scenario.

An example of this is the well-known mechanism of
signature checking in compilers. Calling a function or
method is a complex process; in traditional stack-based
machines, the caller must push parameters in the system
stack. Then, the called routine must be able to pop and use
them (this implies previous knowledge about the number
and size of parameters), and the result must be pushed on
the stack. The caller must use this return value. In addition,
the stack must be cleaned up.

There are several steps where fatal errors can be made:
pushing an incorrect number of parameters, mismatching
size of expected and actual parameters, and so on. Luckily,
many modern programming languages and compilers
incorporate static signature checking, a mechanism that
allows the detection of mismatches at compiling time.
Usually, no program with this kind of mismatches goes
beyond this phase, because the programmer or designer is
forced to the specification of �j� �.�����{�U�G��� as a part of the
programming process itself.

The programmer has a high level of protection in this area.
But there are no similar mechanisms for other critical areas.
The internal structure of the code, the combination of
objects, the proper use of an object’s expected calling
protocol... these facets of the development process are
entirely left to the designer or programmer, who has to rely
on human-readable documentation (usually limited to the
description of �j� �.���3�K�3�j�
� , something clearly incomplete).
As a protection mechanism, several resources, such as
pre/post-conditions and invariants [9], can be used. But
these mechanisms are run-time ones, and in that sense, they
are conceptually not that different from testing.�*���#���3�<�H���P���Q�T�3 ¢¡�£¤�¦¥���§U¨
What can a component-oriented approach bring to this
issue? Components are successfully used in other
engineering disciplines (think about electronics), and one of
the advantages of using components in these cases is that
components are a means to support specifications. These
specifications can be verified and matched against each
other at early stages of the development. Individual quality
control for components benefits also from these
specifications, because they give a starting point upon
which to build test cases, quality control procedures and
acceptance criteria.

A component abstraction, focused on conceptual simplicity
(few concepts), can bring a simple, flexible, powerful
foundation on which to develop a static (as opposed to ©jª3«�¬­{®Q¯8°

) verification system for software. This abstraction (and

the special use of the word ±!²U³ ´ ²Uµ�¶
µ�· in this work) starts
from the problem as stated before, and not from the
commonly accepted idea of ¸H¹3º » ¹U¼�½
¼�¾ , limited to a coarse-
grained, binary entity. Usually, components are seen only
as a means of accelerating the development process
(leveraging the functionality already built) or from a
market-based point of view [12]. Although these
approaches are in no doubt interesting, the component
metaphor can open new ways of building reliable software,
just as the use of signatures did (nowadays, there are a very
limited number of situations in which stack corruption can
be caused for parameter passing).
¿ À¢ÁAÂ8Ã,Ä/ÂÆÅAÇ�Å8È(ÃÉÂgÊAÇ�Ë
The component model presented here, code-named Itacio
(pronounced e-tuh-theo) offers a sort of skeleton which is
the foundation to build practical uses. As in any other
abstract model, some definitions must be made.

Defining what a software component is can be a long topic
in itself. Many acknowledged authors have explained their
use of that word. In addition, there is a mainstream school
of thought about software components, and market and
packing possibilities are a central factor [12]. In this
particular case, however, reliability and early verification
are the main concerns.
ÌÎÍjÏ�Ð8Ñ<ÒHÏ�Ó<Í¤Ô�ÕAÍ�Ö�×KÑ<×QÏ5×KÒ3Ñ#ÒHÖ/Ø�ÒHÖ�Ï�Ù@Ú�Ô�ÍAÛ*Ò3Ü%Ý}Ò3Ñ<ÍHÑ�Ï
Even at the risk of critics, we are forced to give yet another
interpretation of the word. As stated above, the first step to
be done is to describe a generic, simple and flexible
component model to be applied at different levels of
abstraction. Here, a component will be any ÞGßáà3âTãdä3åjæ
àHåGä�ç<è8æ�é�â , with well-defined frontiers or bounds. It will be
something so vague -by now-, but it must be noticed that
although the concept is intentionally vague, it calls for a
component to have clearly defined limits.

The frontier of a component has a permeable part, which is
discrete, divided into connection points. These connection
points are the only way of interaction for a component.
There are two kinds of connection points: sources (which
supply information from the component to outside) and
sinks (which receive information and carry it towards the
component).
êEë�ì�íPî3ë�í�ï4îHí�ïKð3ë
This definition extends the use of the component concept
far beyond the binary entity to which it is usually applied.
So, by means of an ñQò�óGôKõHò�ô{ñQõ�ôKñTöUò process, the concept can
be translated to refer to a library, a whole executable
program, a class definition, a procedure, a loop, or an
operator. This is an essential advantage of this open
approach. More on this later.
÷8ø3ù
úQû�ü�úKý�þ8ÿ��������3ý.ø!ý��/ÿ��	�
���
��ú���ú��3ý
It is obvious that components become especially interesting
when they are composed. Components are for composition
[12, p.3]. Starting from the previous definition of software

3

component, there is no other way to compose software
components than using their connection points, by joining
the sources of the frontier of a component with the sinks of
the frontier of another component, and vice versa.

Apart from the enumeration of components and their
frontiers, with sources and sinks, where is the promised
specification? It resides on the component itself, and the
specification refers to the connection points. Each
connection point is associated with several ���������������������
���! "�����!���$#&%
� . Sources offer '�(�)&*�)&+-,$./.�0 , and sinks pose1�2/3
4
5�1�2�672�8�9�: .
Restrictive expressions should be statically, automatically,
unambiguously verifiable. Starting from a component
connection lattice, the generic or parameterised restrictive
expressions associated with connection points are
instantiated as appropriate, and a sort of ;=<�>
?A@�B=C�D�BFE
G&H�B is
generated. This is, in fact, a formal description of the
system under analysis; a rigorous specification that can be
easily tested for correctness. Sink requirements and source
guarantees must match when considered as a whole; the
result of their evaluation should be a definite verdict about
the suitability of the composition. In addition, the
verification process can pinpoint the invalid unions,
offering specific hints about the reasons of mismatches and
how to correct them.

Static verification is a very important feature of this model,
as stated in the problem description. IKJ�L=M/N�O�P
Q	R$L guarantees
and requirements, such as pre/post-conditions, cannot be
verified at design time; they have effect only at run-time.
SATVU7W7X�Y�UZX/[]\^X
_�`�acbed�X
_
d/f�g�g�`�h�_
In the research activities currently in progress, restrictive
expressions are supported by means of first-order logic
predicates [10], restricted to the form of Horn clauses (such
as the ones used in the Prolog language). These predicates
offer several important advantages:

• There is a lot of accumulated experience in using their
underlying mathematical foundation (first-order logic)
and its real-world implementation (logic programming,
inference engines).

• Logic language is appropriate for humans to express
declarative ideas such as requirements and guarantees.

• A logic specification can be evaluated and a Boolean
(true or false) correctness conclusion can be obtained,
with no ambiguity.

• First-order predicates (specifically, Horn clauses) offer
a flexible way to express almost any kind of
restriction.

• The verification process described here –generating a
sort of i/j-k&lem�n=o�p�nrq
s&t�n at design time and then
inferring- is nicely supported by a logic programming
system.

• Advances in logic programming, such as Constraint
Logic Programming (CLP [4]) extend the application
field to new domains. They are especially suitable for
stating restrictive expressions over values and
domains, providing a powerful, very suitable tool for
component specification as described here.

In this scope, a high percentage of restrictions can
refer to values (numeric or not) and valid ranges. In
fact, passing invalid numeric values to subroutines
which cannot operate with them is a usual source of
errors. A traditional logic programming system, such
as Prolog, would be unable to handle this kind of
restrictions, whereas a CLP system is specially
designed to do it.

u vxwFy7zA{}|�~��V�e��~��A|����A|�wF~
The model described before offers significant advantages.
Component specifications include the enumeration of their
connection points and the restrictive expressions associated
with them. Starting from component specifications (or
building new ones as needed) and combining them in the
design/programming process results in a component lattice,
which can be translated into a knowledge base –in fact, a
verifiable specification-.

This way of working is very general, and can be scaled to
fit several development stages and abstraction levels. The
instantiation of the model (mapping the concepts of
components and connection points with real software
entities) fills the gap between the theory and the real
development. As an example, we expect this model to be
applied at the following levels:
�������������/���������V�/�����
A high percentage of the defects of a program is originated
at the coding level. However, coding is usually left to the
programmer's cleverness. There seems to be no way of
verifying programs correctness at coding level, covering
topics such as: fulfilling parameter-passing restrictions,
checking return values, using loops properly, avoiding
overflow or out-of-range conditions, etc.

As stated above, the component model is a good way to
support specifications. Examining real source code details,
one can find that most of the constructions are easily
identifiable by a programmer, and there is a limited number
of them which are used to build a program. It is not very
usual that a programmer needs to write a completely new
structure; rather than that, a mature programmer has a
finite, although wide, set of resources (what is called���
���&�7�

).

Considering (and building) code as a set of micro-
components, and applying the previous ideas, we can go
back to the old "integrated circuit" metaphor. The following
instantiation of the model applies:

4

���
�������V�/��� �����V���= ��¢¡������V��¡�����£
Function Sinks: in-parameters

Sources: out-parameters, return value
Operator Sinks: operands

Sources: result
User input Sinks: human-readable message

Sources: variable value
User output Sinks: human-readable message,

variable value
Sources: none

Array reading loop Sinks: array size, array indexing
Sources: array element

etc.

By now, we have made the first experiments on a limited
prototype, based on functions, operators and user
input/output. The user of this prototype can draw
component lattices, and C++ source code is generated. This
allows building very simple calculation programs. But

these programs are automatically verifiable; all of the
specifications of the involved elements (components) must
be fulfilled.

As an example, classical programming mistakes are
detected. If a value is passed to the "square root" function,
and it is not guaranteed that this value is positive, the
system pinpoints the offending connection and explains the
reason of the error. The same applies to zero denominators
or other invalid values.

A great advantage of this system relies in its ability to
perform a global analysis starting from purely local
specifications. For instance, if a sink requires a non-zero
value as its input, it does not mean that the source directly
connected to that sink must explicitly offer exactly that
guarantee. That approach would be too rigid. Instead, based
upon the whole connection lattice, the system can infer that
the source always offers a non-zero value, due to the
combined behaviour of all the components directly or
indirectly involved.

¤A¥ ¦�§�¨e©�ªK«�¬
­�¬
­ ®=¯"°7±&«�²�³�¥$­�°�²/­�´�«�°

µF¶
·!¸�¹�º�»A¼�½�¾�¿�À�½�º�Á=¼/¹�º�»
At a higher abstraction layer, a common issue is the
combination of objects or their equivalents. Several
approaches have been taken in this area. The notion ofÂ=Ã&Ä-Å�Æ�Ç�Â/Å has been around for a long time, and it has

suffered a continuous evolution. Bertrand Meyer’s [9]
notion of contract refers to the unilateral commitment that a
class adopts under the form of preconditions,
postconditions and invariants. Wirfs-Brock, Wilkerson and
Wiener [14] promote the notion of contract as a set of

SEDA Add-In

SEDA Add-In

SEDA Add-In
for Itacio
diagrams

CASE diagramming system
(SEDA)

Itacio diagram

Itacio component
(specification)

f(out) :-

 f(in), g(in).

In Out

Knowledge base

f(x) :- f(y), g(y).

CLP System
(ECLiPSe)

f(x)? trueGenerate by instancing rules

5

unidirectional (but bilateral) collaborations between È�ÉeÊ
participants, a client and a server. Steyaert, D’Hondt et al
[11] talk about Ë�Ì/Í�Î�ÌÐÏ/Ñ/Ò-Ó�Ë�Ô	Ï�Ó�Î , which involve several
participants and their interaction. The members of the
Demeter Research Group [7] have defined the Contracts
language for specifying and implementing interactions
between the participants in a contract.

Nevertheless, all of these kinds of contracts have things in
common. All of them are, in some way, Õ�Ö
Õ�×/Ø
Ù�Ú
Û	Ü$Õ
contracts. Pre- and post-conditions and invariants have
been mentioned before; other kind of specifications are
useful for important purposes, but their use as an automated
verification tool is also difficult.

A purely declarative specification mechanism as the one
described here is, in our opinion, better suited to achieve
the pursued early error detection. First, because the ideas
applied in the aforementioned contract specification
techniques can also be stated with restrictive expressions.
Secondly, because declarative specifications are much
easier to match and check.
ÝeÞ/ßàß¢á�â�ã�ä
We believe that patterns are a specially appropriate
environment for specifying and using components. Several
works on architectural mismatches [1, 6] have promoted
the use of domain-specific software architectures (DSSA)
as a proper reuse framework. Basically, patterns and DSSA
allow the components to be functionally identified;
interaction patterns, collaborations, roles, etc. are easily
recognised.

With patterns as a foundation, role and collaboration
constraints can be identified and expressed by means of
first-order logic predicates. The main concerns when
integrating components at this level are:

• Proper use of interfaces. Expected method calling
sequence, re-entrance constraints.

• Proper implementation of required interfaces. Method
availability, parameters, types.

• Dependencies. Methods used as a support for
implementing other methods, assumptions about the
dependencies between other objects.

This is the kind of problems addressed by the Contracts
language [7]. But, as we said, specifications written in
Contracts are difficult to use as a static-checking
mechanism, and static-checking is the preferred way for
early error detection.

In addition, patterns offer a valuable common language for
describing systems. As well as being useful as ideas for
component design, patterns can even be used directly into
specifications; for instance, it may be required for a
component to be able to play the known role of "observer"
[5] and this requirement can be expressed almost exactly

like that. If components are classified taking into account
these "known roles" and patterns, verification systems can
also discard specific component combinations. Of course,
this specific kind of specification would be useful only in
some situations, provided that the model is being applied at
a very high abstraction level.
åçæ�èVé=ê7ë&ì�íàæ�ê=ë&î�æ�ï�ð�ñ�ò�é�ó
é/òôí
The vagueness of the initial Itacio model allows its use in
other scopes by means of the appropriate instantiation
process; for instance, at the architectural level, leveraging
previous work in this field [1] and using the established
vocabulary for stating restrictions.
õ ö7÷Zøù÷Aú�ö�û�üýø�þKú�þAÿ�ø
At the moment, research is still in progress. Our initial
ideas have been captured in the model described before.
This theoretical model must be further formalised and
refined.

After that, we have developed a prototype which includes a
diagramming facility for describing component lattices.
This tool has been built upon an existing generic
diagramming system; it offers a rudimentary support for
component repositories, allows the topological definition of
the connection between sinks and sources, and also the
specification of restrictive expressions for components. We
have made some experiments in the scope of micro-
components and simple calculus programs, in order to
refine the ideas presented here.

Starting from a component lattice, this system is also
capable of generating a knowledge base (a specification of
the whole system), instantiating the restrictive expressions
as appropriate, and asking questions to this knowledge
base, graphically pinpointing the invalid connections
between components and giving hints about the cause of
the error. This is done by interfacing with a CLP
(Constraint Logic Programming) system, ECLiPSe [3, 13].

The prototype generates also a C++ program, equivalent to
the component lattice, although this program is not optimal
C++ code (in fact, code generation is still outside the scope
of this project). Constraint logic programming is also used
at this stage, to find an appropriate sequence for code
generation based on the dependencies between
components.

We are working on the scope of micro-components, and we
also expect to apply this model at other abstraction levels.
The development of these instantiation activities is
currently the main task being carried on, and we expect it
will be so in the near future.
� �������	��
���
��	
��

To summarise, the main benefits of using this schema can
be stated as follows:

6

• Itacio offers a simple, clear model which can be easily
understood by programmers and engineers without a
long, specialised training process.

• Programs are built by joining components in a real
composition process. This process can be validated at
early times, without involving testing and run-time
phases.

• Verification is a formal and automatic process, and its
results are unambiguous. The developers do not have
to rely on their particular interpretation of some
human-readable, ambiguous, incomplete
documentation.

• If a union is not guaranteed to be correct it is
automatically considered to be incorrect. This has an
important impact in quality and error detection. By
contrast, testing techniques can only show the presence
of errors, not giving much confidence about their
absence.

• Detected errors can be self-explained if restrictive
expressions are written with the purpose of doing so.

• This is a real-world technique. As well as no special
skills being required, the underlying concepts and their
implementation do not call for revolutionary new
techniques to be developed; depending on the desired
level of automation, even a simple logic programming
system can support the basic requirements.

• With some additional work in code generation and
reverse-engineering, this schema could reach higher
productivity degrees.

• This model does not leave out previous advances in
contract specification. All of the previous work –IDL,
Contracts, DSSA- can be integrated in Itacio, simply
by incorporating it in a first-order-logic, declarative
notation.

• The specification of a component is a good starting
point for generating test cases and measuring quality as
the conformance of the component with its
specification.

• We must admit that a component may be defined by a
specification that it does not actually fulfil. The
problem of verifying if a program implements what it
promises has no solution. However, at least specified
components would ���������������������������! #" clearly and
explicitly; the vast majority of current commercial
component platforms do not characterise components
but with signatures and data types, which are obviously
insufficient.

Of course, there are also some issues to be taken into
account:

• The biggest problem for this model to work is notation
and standardisation. First-order logic is a very flexible
expression mechanism; this is an advantage for
expressing all kinds of restrictions and guarantees, but
this also makes difficult to mix and match
specifications from different sources. The same
restriction can be expressed in many completely
different ways. This problem, however, is a constant in
all facets of computer systems integration.

• Although this model has been developed with real-
world applicability as a main concern, a considerable
amount of work needs to be done for a complete
Itacio-based tool to ship. This would be mostly routine
development work –an integrated development
environment, graphical tools, specification repositories
and the like- but the advantages of the model can be
difficult to appreciate without a visible working tool.

• There are several challenges to face before the model
can be considered fully functional. The most important
one is to develop proposed component specification
sets; the model does not require the specifications to be
a universal standard, but practical guidelines would be
a key success factor. Some of these sets could be a
complete micro-component coverage of the structures
usually used to write code, and a good integration of
patterns and contracts into the model.

• It would be a great step to enrich the model with a
well-defined code generation system, and with round-
trip engineering tools for easier integration between the
design/verification system and traditional coding tools.

$ %�&�'(&�)�*+)�*-,.*0/�)�1324/�)�*(/5,

This verification system is a goal in itself, but it opens also
very important issues that are worthwhile investigating in
the future. Some of them are:

• A reverse-engineering system for detecting micro-
components in existing code. This is, in our opinion,
an achievable goal, and it would be of great interest for
improving the quality of legacy code. Reverse
engineering from code to analysis/design is a very
complex problem, but the gap between code and
micro-components is much narrower. Even if the
complete translation from source code to micro-
components happens to be impossible, a partial
coverage would be a great advance to detect hidden
defects.

• Constraint logic programming is a powerful tool. The
specification model described here can go beyond
verification purposes; the inference engine could not
only detect a problem, but also propose a solution,
describing what requirements should be fulfilled for a
validity expression to become true. At higher
abstraction levels, this could be the basis for a

7

semiautomatic design system, able to complete
unfinished designs and give advice to the designer.

• Itacio-style specifications can also be used as a means
for searching components in a library, a problem often
presented as a key for the success of code reutilization.
Other kind of formal specifications have been used for
this purpose, and of course other works have focused
on signatures as a means of finding existing
components [15]. An Itacio-like specification of the
needed component can be matched against the
specifications of the available components to find a
suitable one. This is also a research field for the future.

65738�9�:<;4=(>@?�AB>(CD>@9�E@F

The authors wish to thank Seresco, S.A. for giving
permission to build the prototypes upon the CASE
diagramming system SEDA, a subsystem of their AIDA
development platform.
G�H@I�H@G�H@J�K3H-L

1. Abd-Allah, A. Composing Heterogeneous Software
Architectures. Doctoral Dissertation, Center for
Software Engineering, University of Southern
California, August 1996.

2. Booch, Grady. Object-Oriented Analysis and Design
with Applications, 2nd edition. Addison-Wesley Object
Technology Series, February 1994. ISBN:
0805353402.

3. ECLiPSe Web site: http://www.icparc.ic.ac.uk/eclipse

4. Frühwirt, T. et al. Constraint Logic Programming – An
Informal Introduction. Technical report ECRC-93-5.
European Computer-Industry Research Centre,
February 1993.

5. Gamma, E. et al. Design Patterns : Elements of
Reusable Object-Oriented Software (Addison-Wesley

Professional Computing). Addison-Wesley Pub Co.,
October 1995. ISBN: 0201633612

6. Gacek, C. Exploiting Domain Architectures in
Software Reuse. ACM-SIGSOFT SSR’95, 1995.

7. Holland, I. The Design and Representation of Object-
Oriented Components. Doctoral Dissertation, College
of Computer Science, Northeastern University, 1992.

8. McConnell, Steve. Rapid Development : Taming Wild
Software Schedules. Microsoft Press, July 1996. ISBN:
1556159005.

9. Meyer, Bertrand. Object-Oriented Software
Construction (2nd edition). Prentice Hall, 1988.

10. Smullyan, Raymond M. First-Order Logic. Dover
Pubns, February 1995. ISBN: 0486683702.

11. Steyaert, Patrick et al. Reuse contracts: Managing the
evolution of reusable assets. Proceedings of
OOPSLA’96, vol. 31(10) of ACM Sigplan Notices,
pages 268-285. ACM Press, 1996.

12. Szyperski, Clemens. Component Software – Beyond
Object-Oriented Programming. Addison-Wesley,
1997.

13. Wallace, Mark et al. ECLiPSe: A Platform for
Constraint Logic Programming. William Peney
Laboratory, Imperial College, London. August 1997.

14. Wirfs-Brock, Rebecca et al. Designing Object-
Oriented Software. Prentice Hall, 1990.

15. Zaremski, A. M. and Wing, J. M. Signature Matching:
A Key to Reuse. School of Computer Science,
Carnegie Mellon University, 1998.

