
Issues in Component-Based Software
Engineering

Kyo C. Kang
Department of Computer Science and Engineering

Pohang University of Science and Technology (POSTECH)
San 31 Hyoja-Dong, Pohang, 790-784, Korea

Introduction
Software reuse is generally considered as one of the most effective ways of increasing
productivity and improving quality of software. To make software reuse happen, however,
there should be a change in the way we develop software: software must be developed for
reuse and with reuse, and there must be a paradigm shift from the notion of specific
application "development" to that of "integration." Component-based software engineering
(CBSE)[3] is an emerging software engineering paradigm in which applications are
developed by integrating existing components. Here, components refer to any units of reuse
or integration, including computational (i.e., functional) components, interface components,
communication components, and architectures.

In order to maximize the productivity gain and cost reduction, CBSE must be based on
domain-oriented components as well as generic components. In general, the productivity
increase from the reuse of domain-oriented components is higher than the productivity
increase from the reuse of generic components, although reusability of domain-oriented
components might be lower than that of generic components. Therefore, CBSE should
happen in the context of domain-orientation. SAP R/3 [7], Baan IV [1], and Oracle
Applications [6] are good examples of domain-oriented CBSE.

Domain-oriented CBSE is not for any application domains. In immature and unstable
domains, there may not be much domain-oriented components to reuse and CBSE may be
limited to the reuse of generic components. Therefore, CBSE should be applied in mature and
stable application domains, or in an organization where a family of closely related products is
produced.

To develop an application by integrating components, there must be components that can
solve the problems of the given application. Therefore, CBSE must address not only the
issues of how to integrate components but also the issues of how to produce integratable
components. CBSE can only be successful when the issues of both producer’s and consumer’s
are resolved.

In section 2, a CBSE framework is presented in which major activities of both producing and
using components are identified. Section 3 summarizes some of the important component
engineering principles. Some of non-technical but important issues underlying CBSE are
discussed in section 4. Section 5 concludes this position paper.

 page 209

CBSE Framework
To develop software by integrating components, components must be developed for reuse.
Therefore, CBSE must address both the development of reusable components and the
development applications using the reusable components, as shown in Figure 1 [4].

Application-oriented reusable components must be developed for the common needs of the
application domain not for a specific application to maximize reusablity. Domain
engineering, therefore, consists of activities for identifying commonalities of the applications
in the domain (i.e., domain analysis), developing alternative architectures, and developing
reusable code components for the architectures. Once domain engineering is performed for a
domain and reusable components are created, application engineering may proceed applying
the reusable components. User requirements analysis may be performed using the domain
commonality model and an architecture appropriate for the application may be selected.
Based on the selected architecture, the application software can be created by integrating
reusable code components.

 Figure 1: CBSE Process (figure appears on the next page)

One of the most important elements for successful CBSE is the development of reusable (i.e.,
implementing common needs/functions, adaptable, maintainable) components. Some of the
important component engineering principles are discussed in the following section.

Engineering Principles for CBSE
There are principles for the development of components to support component integration.
Some of important component-engineering principles are discussed below.

Domain Orientation: Software reuse may be the most effective ways of increasing
productivity and reducing maintenance as well as development cost of software. To achieve
successful software reuse, commonalities of related systems must be discovered and
represented in a form that can be exploited in developing similar systems. Domain orientation
is one such approach. It attempts to discover commonalities of systems in an application or a
technical area (i.e., a domain) and then develop models or components that can be used in
developing systems in the domain. This approach will help evolving an application as well as
developing a family of applications.

Although domain orientation is believed to be the key element in achieving successful CBSE,
most domain-oriented engineering technologies are still in their infant stage. There are many
technical issues that must be resolved before we can mature these technologies.

Separation of Concerns: This engineering principle is one of the key engineering principles
supporting CBSE. Components must be designed so that each performs a unique singular

 page 210

function. Also, each functional component must be designed independent of the interface
mechanisms it employs to communicate with other components. This principle implies that
selection of a particular functional component or an interface method/mechanism does not
impose any restriction on selection of other components.

Abstract Virtual Machine Interface: Interface of a component must be designed as a virtual
machine. A component must provide a complete, non-redundant (i.e., minimal) interface. The
interface must also hide internals (i.e., implementation decisions) of the components so that
different implementations can be made for the component.

Postponement of Context Binding: In the design of components, we need to strive for the
development of "context free" components focusing only on the core functionality. To the
extent it is possible, binding with particular contextual parameters such as data type, storage
size, implementation algorithms, communication methods, operating environment, etc.
should be postponed until the component integration time when performance optimization is
made.

Design Reuse: For component-based software integration to happen, design (i.e., component
development context) must be shared and reused among the potential users. That is, design
reuse must happen before component reuse. An architectural design shows the allocation of
functionality to components and, for a component integration, reuse of the underlying
architecture based on which components were developed must occur.

Hierarchically Layered Architecture: Architectures and code components must be designed
for maximum flexibility in composing components. Figure 2 includes a layered architecture
model [4] which seperates application task-oriented components, which do controlling and
activity coordination, from functional components, which do mostly computations.
Implementation techniques that are commonly used in the domain are separated from the
functional components as implementation techniques can change for the same functions. Data
communication models (e.g., message queue, task synchronization) are also separated from
the technologies that implement various communication models. This architecture model
allows postponement of the binding of particular implementation techniques until the
component integration time when performance considerations are made.

 page 212

Figure 2: Layered Architecture

Non-technical Issues
One of the most serious problems that impede CBSE is the cost involved in producing
reusable components. The cost of producing reusable components is substantially higher than
the cost of producing a single application without reuse consideration, as high as five times
the cost of producing a single application in some cases [2], few will make this large
investment for others or for the future. This approach may be considered economically viable
in the commercial software development where frequent customization is needed or in the
environment where a family of systems are developed and maintained. It is likely that it will
take some time before CBSE becomes the common practice in software engineering. Some of
the economics issues are discussed in [5].

Developing software for future reuse or for others is not an easy matter in any corporate
environment where software development is managed in terms of projects. It is difficult to
see any development projects that were not under schedule pressures or not in shortage of
resources. Giving incentives (e.g., award, promotion) to contributors or reusers doesn’t
usually make much difference unless those incentives are significant. One of the most
effective ways to promote CBSE in a corporate environment might be to have a central
support organization dedicated to: (1) identify common needs, (2) develop, maintain, and
advertise reusable components, and (3) teach and support reuse.

This support organization should consists of highly skilled software engineers who are able to
perform domain analyses for the application areas of the development organizations
(projects) and develop reusable components applying techniques such as meta-programming,
application generator, macro processing, and template. As they can oversee many projects,
they should be able to identify common problems among projects and provide generic
solutions. The cost of this organization could be amortized through reuse across development
projects.

Conclusion

 page 213

The systematic discovery and exploitation of commonality across related software systems is
a fundamental requirement for achieving successful CBSE, and domain orientation is one of
the most important elements of CBSE. Domain orientation aims at codifying the development
knowledge in an application domain as models and components, and using these models and
components in applications development. CBSE might be applied most effectively in mature
and stable domains where domain-oriented reusable components can be identified.

For CBSE to become the common practice in software engineering, non-technical as well as
technical issues for both producers and consumers of reusable components must be
addressed. The development cost of reusable components is especially high and CBSE may
not happen unless there is a social/organizational infrastructure supporting the production and
exchange of components and amortize the development cost. In a corporate environment, a
central support organization dedicated to the development, maintenance, and support of
reusable components might serve as a support infrastructure.

References

1 Baan Co., http://www.baan.com
2 Basset, P., Netron Inc., Toronto, Canada (private conversation)
3 Brown, A.W., Editor, Component-Based Software Engineering, IEEE Computer

Society, 1996.
4 Kang, K.C., et al., "FORM: A feature-oriented reuse method with domain-specific

architectures", Annals of Software Engineering, Vol. 5, pp. 143-168, 1998.
5 Kang, K.C., Levy, L.S., "Software methodology in the harsh light of economics", The

Economics or Information Systems and Software, (Veryard, R., editor), pp. 183-203,
Butterworth-Heinemann, Ltd, 1991.

6 Oracle Corp., http://www.oracle.com
7 SAP-AG, http://www.sap.com

About this document ...
Issues in Component-Based Software Engineering

This document was generated using the LaTeX2HTML translator Version 96.1-h (September
30, 1996) Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning
Unit, University of Leeds.

The command line arguments were:
latex2html cbs.tex.

The translation was initiated by on Tue Apr 13 16:40:22 KST 1999

Tue Apr 13 16:40:22 KST 1999

 page 214

