
The Role of Architecture Description
Languages in Component-Based

Development:
The SRI Perspective

R. A. Riemenschneider and Victoria Stavridou
Dependable System Architectures Group

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 

Abstract

Most research on architecture description languages (ADLs) has focussed on the use
of architecture description to guide conventional, top-down development of systems.
This paper describes one approach to bringing the benefits of formal architecture
description to the world of component-based development (CBD), where system
developement consists primarily of connecting instances of pre-existing
components. 

1. Using Architecture Descriptions to Achieve Dependability

The principal focus of our group’s ADL work has been on describing architecture
implementation patterns (i.e., rules for implementing abstract architectural constructs in terms of
more concrete constructs), developing techniques for proving that patterns preserve
dependability properties of interest (e.g., security, fault-tolerance), and using those patterns to
incrementally generate implementation-level descriptions of architectures from abstract, easily
analyzable architectural descriptions. For example, we have developed a reference
implementation of an architecture for secure distributed transaction processing (SDTP) -- an
extension of X/Open’s DTP architecture -- and proven it secure by showing that an abstract
description of the architecture is secure and that the patterns used to generate the implementation
of the architecture preserve security. (See M. Moriconi, X. Qian, R. A. Riemenschneider, and L.
Gong, ‘‘Secure software architectures’’, Proceedings of the 1997 IEEE Symposium on Security
and Privacy, pp. 84-98, and F. Gilham, R. A. Riemenschneider, and V. Stavridou, ‘‘Secure
Interoperation of Secure Distributed Databases’’, to appear.) 

In our view, the scope of architectural description is quite broad. We consider any description of
a software system in terms of components, joined by connectors, that satisfy a collection of
constraints to be an architectural description. Components correspond to the ‘‘boxes’’ of the
ubiquitous ‘‘boxes and arrows’’ diagrams used for informal architecture description. Connectors
correspond to the ‘‘arrows’’. What distinguishes architectural descriptions from other sorts of
system description is that only the externally visible interfaces of components are described; the



details of the internal functioning of components is left unspecified. The architectural description
of the system characterizes the ‘‘glue’’ that binds the components together. An architectural
description and descriptions of the components jointly constitute a complete system description. 

In contrast to our broad sense of architectural description, some members of the ADL community
consider a high level of abstraction to be essential to architectural description. They treat
architectural description as the first phase of system design, a basis for more detailed lower level
designs. This difference in viewpoint is not merely terminological. The broad view encourages
the use of ADLs to describe systems, and parts of systems, in terms of connected components at
all levels of abstraction, from highest to lowest. The architectural components in a low level
description can naturally be identified with the reusable components of the CBD paradigm,
providing a link between ADLs and CBD. Our group has recently focussed on ways of
strengthening this link, by adapting our ADL toolset to better support CBD, with a goal of
providing technology for building dependable systems from off-the-shelf components. 

2. Predictably Dependable Computing with Off-the-Shelf Components

One of the challenges in applying the component-based development (CBD) paradigm to critical
software systems is guaranteeing dependability. (A dependable system is one that can be
justifiably relied upon to provide its services.) If a component is nothing more than executable
code, how can a developer gain confidence that it will satisfy his requirements? We are currently
investigating one approach to answering this question. 

In CBD, the developer’s task is to assemble a (large) software system from (a large number of)
reusable components, and perhaps a comparatively small amount of code written for the
particular application. In general, the developer does not have access to the source code for the
components. We shall assume, however, that each component is accompanied by a specification.
At a minimum, this specification describes the component’s interface, its externally observable
behavior, and any constraints that must be satisfied in order for it to behave as specified. The
specification is expressed in a formal notation designed for the purpose. 

Such specifications can serve several functions. First, they provide a way for the component
developer to advertise the component’s capabilities to potential users. Second, they can support
sophisticated component search and retrieval capabilities. (See, e.g., A. M. Zaremski and J. M.
Wing, ‘‘Specification matching of software components’’, Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering (SIGSOFT ’95), pp. 6-19.)
Third, the behavior of the system can be determined from the specified behavior of the
components -- assuming, of course, that the components satisfy their specifications -- together
with a description of how the components are connected. 

From a practical point of view, a system specification constructed by simply conjoining the
specifications of a large number of components is not sufficient for analysis purposes. The
complexity of such specifications are far beyond the bounds of intellectual tractability. In
addition, tools used to establish dependability properties -- such as theorem provers and model
checkers -- are equally incapable of dealing with such complex specifications. Simpler, more
abstract, descriptions are required by humans and CASE tools alike. 



3. Generating Architecture Descriptions by Abstraction

The key observation in adapting out ADL tools to support CBD was that the same architecture
implementation patterns we have been using to generate concrete descriptions from abstract
descriptions can equally well be used to generate abstract descriptions from concrete
descriptions. Our patterns can be thought of as having the form 

If an abstract architectural description matches template T 
And it satisfies the constraints C1, C2, ..., Cn, 

Then it can be implemented by the concrete description that matches template U, 
Provided that the concrete description satisfies the constraints D1, D2, ..., Dm. 

(perhaps together with a collection of ‘‘soft’’ constraints that determine when it is advisable to
apply the pattern). A pattern can be used for refinement by matching an architecture against T,
checking C1, C2, ..., Cn, generating a more concrete architecture that matches U, and adding D1,

D2, ..., Dm to the constraints that must be maintained on further refinement. But the same pattern

can be used for abstraction by matching against U, checking D1, D2, ..., Dm, generating a match

for T, and subsequently maintaining C1, C2, ..., Cn. Consider, for example, a pattern that says an

abstract component can be replaced by an interconnected collection of concrete components,
provided the public interface is maintained. This pattern supports the familiar sort of ‘‘bubble
decomposition’’ (i.e., horizontal component refinement) common to all refinement-oriented
development methodologies. However, it equally supports treating a collection of components as
a single component at a higher level of abstraction. 

Generation of abstract architectural descriptions from concrete descriptions resembles reverse
engineering of systems from source code. In terms of the ‘‘bubble decomposition’’ example,
generating the abstraction requires identifying a group of components that can usefully be treated
as a single abstract component for purposes of some dependability analysis, much as reverse
engineering requires identifying pieces of code that can usefully be treated as modules. The
problem of module identification based on analysis of source code is known to be extremely
difficult. Is there any reason to hope that architecture-based abstraction will be more tractable?
We believe that there is. First, since even low-level architectural descriptions are much simpler
than source code, because the internals of the components have already been abstracted away.
Second, the behavioral descriptions of the connectors are highly structured. Third, our libraries
of architectural implementation patterns are ‘‘domain-specific’’. Our belief is that development
organizations that reuse components will tend to reuse them in similar ways, so that abstraction
patterns that have proven useful in past analyses can be reapplied in similar ways in present
analyses. 

We are currently working on a demonstration of the feasibility of this approach to generating
abstract architectural descriptions from a description of the system as a collection of concrete
components (in the CBD sense) linked by concrete connections (e.g., via CORBA). Abstractions
in several different ADLs will be generated, each will be analyzed using the tools provided by
the ADL, and the pattern instances linking the abstract descriptions to the concrete
implementation will be shown to preserve the results of the analysis (exactly as in the case of



refinement). 

4. Conclusions

ADLs have been shown to provide valuable system analysis capabilities, especially when high
levels of dependability are required. But the problem of how to make effective use of these
capabilities when systems are constructed from reusable components -- especially when
development is principally bottom-up, rather than top-down -- has not been adequately
addressed. We believe that out approach to generating abstract architectural descriptions from
concrete component-based descriptions can bring the benefits of architectural analysis to the
world of CBD. 


