
Componentware - Methodology and
Process

Klaus Bergner, Andreas Rausch,Marc Sihling, Alexander Vilbig
{bergner|rausch|sihling|vilbig}@in.tum.de

Institut für Informatik
Technische Universität München

D-80290 München
http://www4.informatik.tu-muenchen.de

19th March 1999

Introduction: Componentware
Methodology
 Componentware is concerned with the development of software systems by using
components as the essential building blocks. It is not a revolutionary approach but
incorporates successful concepts from established paradigms like object-orientation while
trying to overcome some of their deficiencies. Proper encapsulation of common functionality,
for example, and intuitive graphical description techniques like class diagrams are keys to the
widespread success of an object-oriented software development process. However, the
increasing size and complexity of modern software systems leads to huge and complicated
conglomerations of classes and objects that are hard to manage and understand. Those
systems obviously require a more advanced means of structuring, describing and developing
them. Componentware is a possible approach to solve these problems.

An analogy to the building industry illustrates a successful application of such a
component-oriented approach: First, the building owner provides the architect with the
functional and non-functional requirements in a more or less informal way. Examples are the
number and function of rooms and the money he wants to spend. The architect then
constructs a first, overall ground plan and several side views or even a computer-generated
virtual model of the building. If these proposals meet the owner’s expectations, the architect
will elaborate a more detailed and technical construction plan. It describes the different
components of the building, like walls and windows, and how they fit together. Now the
architect invites tenders for these components and evaluates their offers. At last, the ‘‘best’’
component producers get the job, place the components to the architect’s disposal, and
integrate them into the building. During the whole process, the architect’s construction plan is
the basis of communication between all parties working on the building.

Although there already exist a variety of technical concepts and tools for component-oriented
software engineering, the successful model from the building industry was not completely
transferred to software development yet. In our opinion, this is partly due to the lack of a
suitable componentware methodology. Such a methodology should at least incorporate the
following parts:

 page 194

A well-defined conceptual framework of componentware is required as a reliable
foundation. It consists of a mathematical formal system model which is used to
unambiguously express the basic definitions and concepts. The contained definitions
and concepts should be as simple as possible, yet sufficiently powerful to capture the
essential concepts and development techniques of existing technical component
approaches.
Based on the formal system model, description techniques for components are required.
They correspond to the building plans of architecture and are necessary for
communication with the customer and between the developers. Examples for
description techniques are graphical notations like class diagrams and state transition
graphs from modeling languages like UML as well as textual notations like interface
specifications expressed in CORBA IDL, C++, or Java. Well-defined consistency
criteria between the different description techniques allow to verify the correctness of
different views onto a system with the help of specialized tools.
Development should be organized according to a process model tailored to
componentware. This includes in particular the assignment of discernible development
tasks to individuals or groups in different roles, for example, a software architect
responsible for the overall design of a system, and component developers who produce
and sell reusable components.
The description techniques and the componentware process model should be supported
by tools . At least, these tools should be able to generate an implementation of the
system as well as corresponding documentation. Furthermore, they could facilitate the
verification of critical system properties, based on the formal system model.

A more extensive discussion about these fundamental parts of a componentware methodology
can be found in [BRSV98b]. In the following sections we focus on the process model for
componentware in detail. Such a process model supports system development by clearly
defining individual development tasks, roles and results as well as the relationships between
them. We first cover the essential aspects that distinguish a component-oriented process
model from more traditional approaches. Subsequently, we introduce new development roles
associated with componentware and propose a suitable process model for component users
and developers. Then we discuss some specific component developer issues. A short
conclusion ends the paper, referring to the strawman outline of CBSE’99 [CBS99].

Requirements for a Component-Oriented
Process Model
 The characteristics of a componentware methodology as described in Section 1 require a
suitable process model. Such a process model should itself follow the componentware
pardigm: it should consist of a box of building blocks which can be individually tailored to
the specific needs of the actual project. There should also be a strong focus on reuse and
architectural issues.

New Tasks and Roles
To leverage the technical advantages of componentware and to support the reuse of
existing components, the introduction of new tasks accomplished by individuals or
groups in new roles is immanent. This pertains to roles like Component Developer and

 page 195

Component Assembler , and to tasks like searching for existing components and
evaluating them before their integration into the overall system architecture. The initial
elaboration and the continued development of such an architecture requires further
tasks like architecture design to be performed by special roles like system architects.

Adaptability and Flexibility
The rigidity of traditional, prescriptive process models is widely felt as a strong
drawback, and there is common agreement about the need to adapt the process to the
actual needs. A flexible process model should be more modular and adaptable to the
current state of the project, much in analogy to the essential properties of components
and componentware systems themselves. To provide the necessary flexibility, our
approach uses so-called ‘‘Process Patterns’’ (cf. [Cop94,DW98,BRSV98a]).

Combining Top-Down and Bottom-Up Development
With componentware, the successful combination of top-down and bottom-up
development is essential. On the one hand, one has to take into account the initial
customer requirements, breaking them down into components in a top-down fashion
until the level of detail is sufficient for implementation. On the other hand, one has to
reach a high reuse rate of existing components. Hence, one starts with existing,
reusable components, which are then iteratively combined and composed to
higher-level components in a bottom-up fashion. Obviously, neither pure bottom-up
nor pure top-down approaches are practical in most cases. New process models, like the
Rational Unified Process [Iva99] or the German V-Modell [IAB98] already try to
resolve these both aspects by defining an iterative and incremental process.

Evolutionary Approach
The introduction of new roles and tasks is a key aspect of a process model tailored to
componentware. However, this doesn’t imply that the process model in question has to
be completely new and revolutionary. After all, componentware is itself an
evolutionary approach based on the technical foundations of earlier paradigms like
object-orientation. Therefore a proposed process model for componentware should
represent an adapted and improved version of established practice. In [ABD+99] we
have outlined how the German V-Modell standard can be tailored to componentware,
focusing on reuse issues and process patterns.

Roles of a Component-Oriented Process
Model
 The distinction between the roles of Component Vendors and Component Users is a key
aspect of a component-oriented development process. It is a necessary prerequisite for the rise
of a market for specialized, reusable components of high quality that are needed to build
large, reliable and highly complex systems. Other, more mature industrial branches have
known this separation for a long time [Hin97]. We expect the following, specialized roles to
evolve in the context of component-oriented software development:

Component Developer:
Components are supplied by specialized component developers or by in-house reuse
centers as a part of large enterprises. The responsibilities of a Component Developer are
to recognize the common requirements of many customers or users and to construct

 page 196

reusable components accordingly. If a customer requests a particular component, the
Component Developer offers a tender and sells the component.

Component Assembler:
Usually, complicated components have to be adapted to match their intended usage.
The Component Assembler adapts and customizes pre-built standard components and
integrates them into the system under development.

System Analyst:
As in other methodologies, a System Analyst elicits the requirements of the customer.
Concerning componentware, he also has to be aware of the characteristics and features
of existing systems and business-relevant components.

System Architect:
The System Architect develops a construction plan and selects adequate components as
well as suitable Component Developers and Component Assemblers . During the
construction of the system, the System Architect supervises and reviews the technical
aspects and monitors the consistency and quality of the results.

Project Coordinator:
A Project Coordinator as an individual is usually only part of very large projects. He
supervises the whole development process, especially with respect to its schedule and
costs. The Project Coordinator is responsible to the customer for meeting the deadline
and the cost limit.

Process Model for Componentware
 Figure 1 illustrates our proposal for a flexible, component-oriented process model. It shows
the different tasks of a componentware development process. Each of these tasks produces
results. Thus, a process model for componentware contains a hierarchical task structure resp.
result structure . Note that the presented concepts apply to Component Users , i.e. the
developers of component-oriented systems, as well as for Component Vendors shipping
components to Component Users .

 Figure 1: Component-Oriented Process Model (figure appears on the next page)

The main parts are resembling the phases of conventional process models although we
explicitly separate business-oriented design from technical design: Analysis, Business Design,
Technical Design, Specification, and Implementation. All main development tasks, like
Business Design, consist of subtasks like Architecture Design, Component Design,
Evaluation, and Search each of which is requiring and/or producing development results. For
instance, during some task a so-called Component Design Document is created which may
contain several diagrams using the description techniques mentioned in [BRSV98b] and
which is reflected in the result structure shown in Figure 1.

The produced documents and other development artifacts serve as interfaces of the main
tasks, analogous to ‘‘real’’ interfaces of software components. The connections between the
tasks, namely, the consistency conditions and the flow of structured development information,
are visualized by thick, grey arrows in Figure 1.

Note that there are no arrows between the subtasks (resp. subresults) in a main task (resp.
result). This is due to the fact that these subtasks are even closer coupled than the main tasks

 page 197

and are usually developed together. As componentware is based on reusing existing software,
it is not plausible, for example, to design the technical architecture (subtask Architecture
Design of main task Technical Design) without searching for and evaluating existing
technical components (subtasks Search and Evaluation of the same main task).

In contrast to traditional process models, we do not define any particular order on the
temporal relationship between the development tasks and their results. We believe that a truly
flexible process should be adapted to the current state of the project which is partly
determined by the current state of the development documents. According to this state, a
given development context, and a set of external conditions, we define so-called process
patterns which provide guidelines about the next possible development steps. Details about
the proposed result structure and the pattern-based approach can be found in [BRSV98a]. In
the following, we describe the tasks (resp. results) and involved roles in more detail.

Analysis:

The Analysis main result resp. task contains the specification of the customer requirements.
The subresult Interaction Analysis is concerned with the interaction between the system and
its environment. It determines the boundary of the system, the relevant actors (both human
and technical systems), and their usage of the system to be developed. Contained may be parts
like an overall Use Case Specification, a Business Process Model, Interaction Specifications
including System Test Cases, and an explorative GUI Prototype.

The subresult Responsibility Analysis specifies the expected functionality of the system with
respect to the functional and non-functional user requirements. It describes the required
services and use cases of the system in a declarative way by stating what is expected without
prescribing how this is accomplished. Contained are parts like Service Specifications, Class
Diagrams, and a Data Dictionary.

The subresult Risk Analysis identifies and assesses the benefits and risks associated with the
development of the system under consideration. In the context of componentware, this
requires a Market Study with information about existing business-oriented solutions, systems,
and components.

Note that Analysis usually not only covers functional and non-functional requirements, but
also technical requirements restricting the technical architecture of the system to be built.
While the functional requirements must be fulfilled by the Business Design main result, the
non-functional and technical requirements must be compliant with the Technical Design main
result. Furthermore, the Implementation must pass the System Test Cases.

Business Design:

Business Design defines the overall business-oriented architecture of the resulting system and
specifies the employed business components. The subresults Architecture Design and
Component Design are comparable to the Interaction Analysis and Responsibility Analysis
subresults of Analysis. However, they do not address technical issues, but instead provide a
detailed specification of the business-relevant aspects, interactions, algorithms, and
responsibilities of the system and its components. Search corresponds to a preselection of
potentially suitable business components and standard business architectures that are subject

 page 199

to a final selection within the Specification main result. Within Evaluation, the characteristics
of the found components and architectures are balanced against the criteria identified in
Architecture Design and Component Design.

Technical Design:

Technical Design comprises the specification of technical components, like database
components, for example, and their overall connection architecture which together are suited
to fulfill the customer’s non-functional requirements. As this result deals with technical
aspects of the system like persistence, distribution, and communication schemes, Technical
Design represents a dedicated part of the development results that should be logically
separated from Business Design.

In the context of componentware, however, the applied development principles are the same
for both areas. Consequently, the involved subresults are analogous to those of Business
Design.

Specification:

The main results Business Design and Technical Design are concerned with two
fundamentally different views on the developed system. The Specification main result merges
and refines both views, thereby resulting in complete and consistent Architecture and
Component Specifications.

As said above, both Business Design and Technical Design cover an evaluation of existing
components from the business and technical point of view, resulting in a preselection of
potentially suitable components for the system. The Specification subresult Component Test
contains the results and test logs of these components with respect to the user requirements
and the chosen system architecture. Note that such tests should be performed as soon as the
specification of a component is available in order to avoid problems during system
integration.

Some of the desired components may simply be ordered whereas other components are not
available at all and must be developed. The Component Assignment subresult specifies which
components are to be developed in the current project and which components are ordered
from external component suppliers or in-house profit centers. If a component is to be
developed outside of the current project, a new, separate result structure has to be set up. Note
the close correspondence between Architecture Specification and Component Specification on
the one hand, and Interaction Analysis and Responsibility Analysis on the other hand. It
allows for a clear hand-over of a component specification to a component developer outside
the project.

Implementation:

The most important subresult of the Implementation main result is of course the Code of the
system under consideration. It comprises source code as well as binary-only components. The
other subresult covers the System Test results.

Note again that all subtasks mentioned in the above sections may be performed concurrently

 page 200

and influence each other mutually. For instance, it might be advisable to implement and test
critical subsystems early in order to reduce the development risk.

Component Developer Issues
A Component Developer implements and ships components to his customers, the component
users. These component users may be end-users, i.e. Project Coordinators , System Architects
, and Component Assemblers . The corresponding process model for a Component Developer
is rather similar to the process model for component users, as described in Figure 1:

A Component Developer does also receive requirements from his customers, although these
requirements are specifications which are usually more formal than the requirements provided
by end-users. The Component Developer screens his stock for a component which suits the
customer’s requirements. In some cases an existing component merely has to be adapted
during the corresponding design and implementation tasks. The resulting development
process is rather fast and the component can soon be delivered.

In other cases, the Component Developer has no suitable component in stock, and
consequently performs a complete development process as described in the previous section.
During Analysis, the Component Developer should consider customer requirements from a
more abstract point of view in order to develop components that may also be (re)used in a
different context by different customers. Therefore, a special marketing department should
perform an according market study.

During Business Design and Technical Design the Component Developer specifies the
component architecture. Possibly, a combination of smaller components within this
architecture already fulfills the given requirements. Otherwise, the Component Developer has
to design and implement the component from scratch. Subsequently, the developed
component is tested against the more abstract requirements provided by the market study.
Finally, the Component Developer will adapt the component, test it against the original
requirements provided by the original customer, and deliver it after a successful test.

Conclusion and Further Work
In this paper, we have outlined an overall methodology for componentware consisting of four
essential building blocks: a Formal System Model , Description Techniques , a Process Model
, and Tools . We have presented a modular and adaptable process model suited for
componentware based on an overall result resp. task structure and a set of new roles and tasks
performing process patterns to fill the result structure.

We think that this work could be part of the CBSE handbook--Chapter 2.1 and 2.2 [CBS99].
We know that we still need to provide further work, especially with respect to refining and
elaborating a more detailed result structure. The final result structure will be a combination of
the result structures in existing process models, like the RUP [Iva99] or the
V-Model [IAB98], tailored to the specific needs of componentware. It will also be elaborated
and enhanced with additional aspects, especially with respect to economical and
management-related aspects. Based on this result structure, we have to work out the life-cycle

 page 201

and typical activities in componentware projects. Then we have to elaborate a clear
understanding about the different roles and responsibilities in component-based development
projects.

Finally, the proposed process model and its accompanying pattern language
(cf. [BRSV98a,ABD+99]) are far from being complete--both structure and content of the
pattern catalog are not sufficiently elaborated. For the CBSE handbook we have to expand
and improve the patterns. Furthermore, we have to present existing process models as process
patterns, as we already did in [ABD+99]. Thus, the CBSE handbook will contain a set of
process patterns which can be tailored individually to the specific needs of the current project.

=

References

ABD+99
Dirk Ansorge, Klaus Bergner, Bernd Deifel, Nicholas Hawlitzky, Andreas Rausch,
Marc Sihling, Veronika Thurner, and Sascha Vogel.
Managing componentware development - software reuse and the v-modell process.
In Proceedings of CAiSE ’99, Lecture Notes in Computer Science. Springer, 1999.

BRSV98a
Klaus Bergner, Andreas Rausch, Marc Sihling, and Alexander Vilbig.
A componentware development methodology based on process patterns.
In PLOP‘98 Proceedings of the 5th Annual Conference on the Pattern Languaes of
Programs. Robert Allerton Park and Conference Center, 1998.

BRSV98b
Klaus Bergner, Andreas Rausch, Marc Sihling, and Alexander Vilbig.
An integrated view on componentware - concepts, description techniques, and
development process.
In Roger Lee, editor, Software Engineering : Proceedings of the IASTED Conference
‘98. ACTA Press, Anaheim, 1998.

CBS99
CBSE’99.
http://www.sei.cmui.edu//cbs//icse99//strawman.html , 1999.

Cop94
J. O. Coplien.
A development process generative pattern language.
In PLoP ’94 Conference on Pattern Languages of Programming, 1994.

DW98
Desmond D’Souza and Allan Wills.
Objects, Components, and Frameworks with UML: The Catalysis Approach.
to appear, http://www.iconcomp.com/catalysis , 1998.

Hin97
Dietrich Hinz.

 page 202

Die neue HOAI.
Forum Verlag Herkert GmbH, Merching, 1997.

IAB98
IABG.
Das V-Modell, http://www.v-modell.iabg.de/, 1998.

Iva99
Ivar Jacobson and Grady Booch and James Rumbaugh.
The Unified Software Development Process.
Addison Wesley, 1999.

=

About this document ...

Componentware - Methodology and Process

This document was generated using the LaTeX2HTML translator Version 97.1 (release) (July
13th, 1997)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit,
University of Leeds.

The command line arguments were:
latex2html position.tex.

The translation was initiated by Andreas Rausch on 3/22/1999

Andreas Rausch
3/22/1999

 page 203

page 204

