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Abstract.

In this chapter we intend to present a survey recent progress in the development and application of
formal techniques for component-based software systems. This chapter may be included in part 4 or
part 3 of the proposed book outline. As central issues, we discuss formal methods and their applications
to component descriptions (such as COM) and architecture descriptions (such as UNICOM). As a
starting point, we discuss formal models for the specification and verification of Module
Interconnection Languages (MILs). Topics that we plan to discuss in this chapter include the precise
specifications of component-based and architectural models and their properties, automated analysis of
the models, and use of design constraints to provide guarantees about, for example, and the system
structure and behavior. Finally, we discuss some general promising research directions in this area.

The main idea of this chapter is to describe and emphasize the current and future (potential) benefits of
the interaction between formal methods and component-based software engineering. The content of the
chapter, although ``formal’’, should be presented in a ``user friendly’’ way. The chapter may be
adapted to fit the negotiated final content of the book; for example, we can restrict ourselves to
component descriptions and omit section 5 on the formalization of ADLs. 

1. Introduction

Component-based software engineering has been widely accepted to be an engineering discipline.
Typically, all engineering disciplines today are based on some theoretical foundations, and these
foundations are a basis for understanding the involved engineering tasks, rules, procedures, and
processes. Also, component-based software engineering needs its own theoretical foundations like any
other engineering discipline.

The goal of the following proposed sections is to describe the current state of the application of formal
techniques to component-based software engineering and give some indication about promising related
research directions in the area. 

2. Formal Methods

In the context of software, the term ``formal methods’’ refers to the use of techniques from formal logic
and discrete mathematics in the specification, design, and construction of computer software [7,8,9,10].
By using formal or rigorous specifications, much of the ambiguity that is found inevitably in informal



specifications can be eliminated. The use of formal specifications allows the software systems to be
analyzed in various useful ways: many ways. Formal proofs eliminate the subjectivity and ambiguity of
requirements by providing a logical and precise argument of the behavior of the requirements. The use of
formal specifications and formal proofs also provide a systematic approach to analysis. Formal
specifications and formal analysis can be applied at any life cycle phase, can be supported by
computer-based tools, and can complement (formal) testing approaches [11,12]. 

In this section, we plan to briefly describe some representative formal techniques relevant to this chapter
will be presented, such as model-based, state-based, and event-based. 

3. Module Interconnection Languages (MILs)

Proposed as a significant step towards programming in a higher level of abstraction, Module
Interconnection Languages (MILs) were originally proposed in [1]. Extensions, such as object-oriented
MILs, were also later proposed [2]. 

MILs were formalized in [3]. A formal specification language, Z [15], was used to describe the MIL
models. The model allowed the basic MIL components to be instantiated and connected to each other.
The general MIL model was instantiated into two well-known MIL variants. Illustrative parts of the MIL
models will be shown. See [14] for an alternative formalization. The benefits of these formalizations are
discussed.

We also discuss how extended MIL models can be formally analyzed. We describe some work on
analyzing the MIL models with respect to their structural properties and their configurations. We describe
how reasoning about changes can be performed in this context [4,5].

4. Component Models

In this section we describe applications of formal methods related to representative component models.
We plan to describe current efforts to specify general component models, as well formal aspects related
to COM (CORBA, and Java BEANS) and formally analyzing these models. Illustrative COM formal
specifications and verifications based on the formal models can be found in [20,31,32].

We also briefly describe some of the efforts towards component-based software composition [34-40,6]
and other related instances where formal methods were applied [33].

5. Architectural Description Languages

In this section we describe applications of formal methods related to ADLs
[13,16-19,21-24,29,30,42,43]. We plan to concentrate not so much on the description of the formal basis
for some representative ADLs, but on applications taking advantage of the formal descriptions such as
formal analysis and testing. Formal analysis includes verification techniques (theorem proving and model
checking [26,27]).

6. Research Directions

Promising research directions related to the application of formal methods in CBSE are presented. We
will discuss some issues about the specification, formal design, refinement, formal analysis and testing
(including specification-based testing), maintenance (including adaptation of components), and formal



retrieval of components. 
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