
Component Evolution in Product-Line
Architectures

Jan Bosch & PO Bengtsson
University of Karlskrona/Ronneby

Department of Software Engineering and Computer Science
S-372 25 Ronneby, Sweden

e-mail: [Jan.Bosch|PO.Bengtsson]@ipd.hk-r.se
www: http://www.ipd.hk-r.se/[~bosch|~pob]

Abstract
The results of a case study investigating the experiences of component-based
software development in the context of a product-line architecture are presented.
The case study involves two companies, i.e. Axis Communications AB and
Securitas Larm AB that employ product-line architectures. The paper discusses the
differences between the academic and the industrial view on software components,
the problems associated with using reusable components in product-line
architectures identified in the case study and, finally, a cause analysis.

1 Introduction
Reusable components have been a goal of the software engineering research community for several decades. Over
the years, much research effort has been spent on achieving this goal, e.g. [Weck et al. 97] and [Weck et al. 98]. At
least, two important lessons with respect to component-based software development have been learned over the
years. First, opportunistic reuse of components does not work and any form of component reuse requires a managed
and explicit effort. Second, bottom-up reuse, i.e. plugging together previously unrelated components, has proven not
to work in practice, and a top-down approach, i.e. providing a context for components in the form of a component
framework [Szyperski 97] or a software architecture, is a necessary ingredient of any successful reuse program.

Within industry, one can identify an increasing use of and interest in, so-called, product-line architectures. Product-
line architectures define a common software architecture for a family of products and an associated set of reusable
components. These components are generally relatively large entities, up to 100 KLOC, but define an interface and
provide several points of variation to cover the product-specific requirements. The components may be
commercially bought, but most are developed within the organization. Since the requirements for the products
change over time, the requirements on the product-line architecture and, consequently, on the reusable components,
change accordingly. This requires the components to evolve, which leads to a number of problems. In this paper, we
present the results from a case study in which we have investigated what problems are associated with the evolution
of reusable components in product-line architectures.

The remainder of this paper is organized as follows. In the next section, the case study and the case study companies
are presented. Section 3 compares the academic and industry views of software components. The problems related to
the evolution of reusable components in product-line architectures that were identified during the case study are
presented in section 4 and the underlying causes are analysed in section 5. The paper is concluded in section 6.

2 Case Study
The goal of the study was to get an understanding of the problems and issues surrounding the use of reusable
components that are part of a product-line architecture in ‘normal’ software development organisations, i.e.
organisations of small to average size, i.e., tens or a few hundred employees, and unrelated to the defence industry.

The most appropriate method to achieve this goal, we concluded, was through interviews with the system architects
and technical managers at software development organisations. Since this study marks the start of a three year
government-sponsored research project on composition and evolution problems of reusable components involving
our university and three industrial organisations, i.e. Axis Communications AB, Securitas Larm AB and Ericsson
Mobile Communications AB, the interviewed parties were taken from this project. The third organisation, a business
unit within Ericsson Mobile Communications, is a recent start-up and has not yet produced product-line architectures
or products. A second reason for selecting these companies was that, we believe them to be representative for a
larger category of software development organisations. The organisations develop software that is to be embedded in
products also involving hardware and mechanics, are of average size, e.g., development departments of 10 to 60
engineers and develop products sold to industry or consumers.

Axis Communications AB develops IBM-specific and general printer servers, CD-ROM and storage servers,
network cameras and scanner servers. Especially the latter three products are built using a common product-line
architecture and reusable components, i.e. a set of more than ten object-oriented frameworks. The organisation is
more complicated than the standard case with one product-line architecture (PLA) and several products below this
product-line. In the Axis case, there is a hierarchical organisation of PLAs, i.e. the top product-line architecture and
the product-group architectures, e.g. the storage-server architecture. Below these, there are product architectures, but
since generally several product variations exist, each variation has its own adapted product architecture.

Securitas Larm AB, earlier TeleLarm AB, develops, sells, installs and maintains safety and security systems such as
fire-alarm systems, intruder alarm systems, passage control systems and video surveillance systems. The company’s
focus is especially on larger buildings and complexes, requiring integration between the aforementioned systems.
Therefore, Securitas has a fifth product unit developing integrated solutions for customers including all or a subset of
the aforementioned systems. Securitas uses a product-line architecture only in the fire-alarm products and traditional
approaches in the other products. However, due to the success in the fire-alarm domain, the intention is to expand
the PLA in the near future to include the intruder alarm and passage control products as well. Different from most
other approaches where the product-line architecture only contains the functionality that is shared between various
products, the fire-alarm PLA aims at encompassing the functionality in all fire-alarm product instantiations. A
powerful configuration tool, Win512, is associated with the EBL 512 product that allows product instantiations to be
configured easily and supports in trouble-shooting.

3 Comparing Research and Industry Views
An important issue we identified during this case study and our other cooperation projects with industry is that there
exists a considerable difference between the academic perception of software components and the industrial practice.
It is important to explicitly discuss these differences because the problems described in the next section are based on
the industrial rather than the academic perspective. It is interesting to notice that sometimes the problems that are
identified as the most important and difficult by industry are not identified or viewed as non-problems by academia.

For components, one can identify a similar difference between the academic and industrial understanding of the
concepts. In table 1, an overview is presented comparing the two views. The academic view of components is that of
black-box entities with a narrow interface. The industrial practice shows that components often are large pieces of
software, such as object-oriented frameworks, with a complex internal structure and no explicit encapsulation
boundary. Due to the lack of an encapsulation boundary are software engineers able to access any internal entity in
the component, including the private entities. Even when only using interface entities, the use of components often is
very complex due to the sheer size of the code. Variations, from an academic perspective, are limited in number and
are configured during instantiation by other black-box components. In practice, variation is implemented through
configuration, but also through specialisation or replacement of entities internal to the component. In addition,
multiple implementations of a component may be available to deal with the required variability. Finally, academia
has a vision of components that implement standardized interfaces and that are traded on component markets. To
achieve this, there is a focus on component functionality and formal verification. In practice, almost all components
are developed internally and in the exceptional case a component is acquired externally, considerable adaptation of
the component internals is required. In addition, the quality attributes of components have at least equal priority,
when compared to functionality.

Table 1: Academic versus industrial view on reusable components

Research Industry

Reusable components are black-box. Components are large pieces of software (sometimes more
than 80 KLOC) with a complex internal structure and no
enforced encapsulation boundary, e.g., object-oriented
frameworks.

Components have narrow interface through a
single point of access.

The component interface is provided through entities, e.g.,
classes in the component. These interface entities have no
explicit differences to non-interface entities.

Components have few and explicitly defined
variation points that are configured during
instantiation.

Variation is implemented through configuration and
specialisation or replacement of entities in the component.
Sometimes multiple implementations (versions) of
components exist to cover variation requirements

Components implement standardized interfaces
and can be traded on component markets.

Components are primarily developed internally.
Externally developed components go through
considerable (source code) adaptation to match the
product-line architecture requirements.

Focus is on component functionality and on the
formal verification of functionality.

Functionality and quality attributes, e.g. performance,
reliability, code size, reusability and maintainability, have
equal importance.

4 Problems
Based on the interviews and other documentation collected at the organisations part of this case study, we have
identified a number of problems related to reusable components that we believe to have relevance in a wider context
than just these organisations. In the remainder of this section, the problems that were identified during the data
collection phase of the case study are presented. The problems are categorized into three categories, related to
multiple versions of components, dependencies between components and the use of components in new contexts.

Multiple versions of components

Product-line architectures have associated reusable components that implement the functionality of architectural
entity. As discussed in the previous section, these components can be very large and contain up to a hundred KLOC
or more. Consequently, these components represent considerable investments, multiple man-years in certain cases.
Therefore, it was surprising to identify that in some cases, the interviewed companies maintained multiple versions
(implementations) of components in parallel. One can identify at least four situations where multiple versions are
introduced.

Conflicting quality requirements: The reusable components that are part of the product line are generally
optimised for particular quality attributes, e.g., performance or code size. Different products in the
product-line, even though they require the same functionality, may have conflicting quality requirements.
These requirements may have so high priority that no single component can fulfil both. The reusability of the
affected component is then restricted to only one or a few of the products while other products require
another implementation of the same functionality.
Variability implemented through versions: Certain types of variability are difficult to implement through
configuration or compiler switches since the effect of a variation spreads out throughout the reusable
component. An example is different contexts, e.g., operating system, for an component. Although it might be
possible to implement all variability through, e.g., #ifdef statements, often it is decided to maintain two

different versions.
High-end versus low-end products: The reusable component should contain all functionality required by
the products in the product-line, including the high-end products. The problem is that low-end products,
generally requiring a restricted subset of the functionality, pay for the unused functionality in terms of code
size and complex interfaces. Especially for embedded systems where the hardware cost play an important
role in the product price, the software engineers may be forced to create a low-end, scaled-down version of
the component to minimize the overhead for low-end products.
Business unit needs: Especially in the organizational model used by Axis, where the business units are
responsible for component evolution, components are sometimes extended with very product-specific code or
code only tested for one of the products in the product-line. The problems caused by this create a tendency
within the affected business units to create their own copy of the component and maintain it for their own
product only. This minimizes the dependency on the shared product-line architecture and solves the problems
in the short term, but in the long term it generally does not pay off. We have seen several instances of cases
where business units had to rework considerable parts of their code to incorporate a new version of the
evolved shared component that contained functionality that needed to be incorporated in their product also.

Dependencies between components

Since the components are all part of a product-line architecture, they tend to have dependencies between them.
Although dependencies between components are necessary, often dependencies exist that could have been avoided
by another modularization of the system or a more careful design. >From the examples at the studied companies, we
learned that the initial design of the architecture generally defines a small set of required and explicitly defined
dependencies. It is often during evolution of components that unwanted dependencies are created. Based on our
research at Axis and Securitas, we have identified three situations where new, often implicit, dependencies are
introduced:

Component decomposition: With the development of the product-line architecture generally also the size of
the reusable components increases. Companies often have some optimal size for a component, so that it can
be maintained by a small team of engineers, it captures a logical piece of domain functionality, etc. With the
increasing size of components, there is a point where a component needs to be split into two components.
These two components, initially, have numerous relations to each other, but even after some redesign often
several dependencies remain because the initial design did not modularise the behaviour captured by the two
components. One could, obviously, redesign the functionality of the components completely to minimize the
dependencies, but the required effort is generally not available in development organizations.
Extensions cover multiple components: Development of the product-line architecture is due to new
functional requirements that need to be incorporated in the existing functionality. Often, the required
extension to the product-line covers more than one component. During implementation of the extension, it is
very natural to add dependencies between the affected components since one is working on functionality that
is perceived as a unit, even though it is divided over multiple components.
Component extension adds dependency: As mentioned, the initial design of a PLA generally minimizes
dependencies between its components. Evolution of a component may cause this component to require
information from an earlier unrelated component. If this dependency had been known during the initial PLA
design, then the functionality would have been modularised differently and the dependency would have been
avoided.

Components in new contexts

Since reusable components represent considerable investments, the ambition is to use components in as many
products and domains as possible. However, the new context differs in one or more aspects from the old context,
causing a need for the component to be changed in order to fit. Two main issues in the use of components in new
context can be identified:

Mixed behaviour: A component is developed for a particular domain, product category, operating context
and set of driving quality requirements. Consequently, it often proves to be hard to apply the component in
different domains, products or operating contexts. The design of components often hardwires design
decisions concerning these aspects unless the type of variability is known and required at design time.
Design for required variability: It is recommended best practice that reusable components are designed to
support only the variability requested in the initial requirement specification, e.g., [Jacobsen et al. 97].
However, a new context for a component often also requires new variability dimensions. One cannot expect
that components are designed including all thinkable forms of variability, but components should be designed
so that the introduction of new variability requires minimal effort.

5 Cause Analysis
The problems discussed in the previous section present an overview over the issues surrounding the use of reusable
components in product-line architecture. We have analysed these problems in their industrial context and have
identified, what we believe to be, the primary underlying causes for these problems. Below, these causes are briefly
discussed:

Early intertwining of functionality : The functionality of a reusable component can be categorized into
functionality related to the application domain, the quality attributes, the operating context and the
product-category. Although these different types of functionality are treated separately at design time, both in
the design model and the implementation they tend to be mixed. Because of that, it is generally hard to
change one of the functionality categories without extensive reworking of the component. Both the
state-of-practice as well as leading authors on reusable software, e.g., [Jacobsen et al. 97], design for required
variability only. That is, only the variability known at component design time is incorporated in the
component. Since the requirements evolve constantly, requirement changes related to the domain, product
category or context generally appear after design time. Consequently, it then often proves hard to apply the
component in the new environment [Bosch 99b].
Organization: Both Securitas and Axis have explicitly decided against the use of separate domain
engineering units for engineering reusable components. The advantages of separate domain engineering
units, such as being able to spend considerable time and effort on thorough designs of components were
generally recognised. On the other hand, people felt that a domain engineering group could easily get lost in
wonderfully high abstractions and highly reusable code that did not quite fulfil the requirements of the
application engineers. In addition, having explicit groups for domain and application engineering requires a
relatively large software development department consisting of at least fifty to a hundred engineers.
Time to market: A third important cause for the problems related to reusable components at the interviewed
companies is the time-to-market pressure. Getting out new products and subsequent versions of existing
products is very high up on the agenda, thereby sacrificing other topics. The problem most companies are
dealing with is that products appearing late on the market will lead to diminished market share or, in the
worst case, to no market penetration at all. However, this all-or-nothing mentality leads to an extreme focus
on short-term goals, while ignoring long term goals. Sacrificing some time-to-market for one product may
lead to considerable improvements for subsequent products, but this is generally not appreciated.
Economic models: As mentioned earlier in the paper, reusable components may represent investments up to
several man years of implementation effort. For most companies, a component represents a considerable
amount of capital, but both engineers and management are not always aware of that. For instance, an
increasing number of, especially implicit, dependencies between components is a sign of accelerated aging of
software and, in effect, decreases the value of the component. However, since no economic models are
available that visualise the effects of quick fixes causing increased dependencies, it is hard to establish the
economic losses of these dependencies versus the time-to-market requirements. In addition, reorganisation of
software components that have been degrading for some while is often not performed, because no economic
models are available to visualize the return on investment.
Encapsulation boundaries and required interfaces: Although many of the issues surrounding product-line
architectures are non-technical in nature, there are technical issues as well. The lack of encapsulation
boundaries that encapsulate reusable components and enforce explicitly defined points of access through a
narrow interface is a cause to a number of the identified problems. In section 3, we discussed the difference

between the academic and the industrial view on reusable components. Some of the components at the
interviewed companies are large object-oriented frameworks with a complex internal structure. The
traditional approach is to distinguish between interface classes and internal classes. The problem is that this
approach lacks support from the programming language, requiring software engineers to adhere to
conventions and policies. In practice, especially under strong time-to-market pressure, software engineers
will access beyond the defined interface of components, creating dependencies between components that may
easily break when the internal implementation of components is changed. In addition, these dependencies
tend to be undocumented or only minimally documented.

A related problem is the lack of required interfaces. Interface models generally describe the interface provided by a
component, but not the interfaces it requires from other components for its correct operation. Since dependencies
between components can be viewed as instances of bindings between required and provided interfaces, one can
conclude it is hard to visualize dependencies if the necessary elements are missing.

6 Conclusions
The use of reusable components in product-line architectures provides one of the most promising approaches for
improving the state-of-the-art in component-based software development. However, the use and evolution of these
components still has a number of problems associated with it. In this paper, we have identified these problems based
on a case study that we performed at two swedish software development companies. We have analysed the problems
and identified the primary causes underlying these problems.

A considerable body of research exists that addresses, at least up to some extent, the problems and causes discussed
in this paper. Due to reasons of space, we are unable to include a discussion of related work. However, we refer to
[Bosch 99a] for an overview.

References

[Bosch 99a] Jan Bosch, ‘Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study’, Proceedings of the First Working IFIP Conference on Software
Architecture, 1999.

[Bosch 99b] Jan Bosch, ‘Superimposition: A Component Adaptation Technique,’ Accepted for
publication in Information and Software Technology, February 1999.

[Jacobsen et al. 97] I. Jacobsen, M. Griss, P. Jönsson, Software Reuse - Architecture, Process and
Organization for Business Success, Addison-Wesley, 1997.

[Szyperski 97] C. Szyperski, Component Software - Beyond Object-Oriented Programming,
Addison-Wesley, 1997.

[Weck et al. 97] W. Weck, J. Bosch, ‘Proceedings of the Second Workshop on Component-Oriented
Programming,’ TUCS general publication Nr. 5, September 1997.

[Weck et al. 98] W. Weck, J. Bosch, C. Szypersky, ‘Proceedings of the Third Workshop on
Component-Oriented Programming,’ TUCS general publication Nr. 10, October 1998.

