
A Model for Classifying Component
Interfaces

Sherif Yacoub, Hany Ammar, and Ali Mili
{yacoub,hammar,amili}@csee.wvu.edu

CSEE Department
West Virginia University,
Morgantown, WV 26506

Abstract

This paper identifies some issues related to component interfaces. We present a model for
component interactions and interfaces to the surrounding artifacts. We classify interfaces as
Application and Platform . Classification of interfaces helps in identifying issues related to a
component’s interoperability (interactions with other components) and portability (interactions
with the platform). The model is a preliminary step towards establishing a framework for
classifying and evaluating which languages and notations are adequate to specify different types
of interfaces. We propose this classification for the third section of the CBSE handbook
" Technology for Supporting CBSE: Development Support " under the " Models ".

1. Component Interfaces

Component-based software development is the process of assembling software components in an
application such that they interact to satisfy a predefined functionality. Each component will
provide and require pre-specified services from other components, hence, the notion of
component interfaces becomes an important issue of concern. " Components are expressed in
terms of externally visible interfaces and semantics, not the implementation" [2] where interfaces
are the mechanisms by which information is passed between two communicating components.
The use of components exacerbates interface centered software architecture because components
offer interfaces to the outside world, by which it may be composed with other components [3].

Several work in component interfaces [for example 8,9, and 7] focused mainly on issues related
to interaction between individual components. Component interfaces were classified as
"functional" and "extrafunctional" [7], defined for UML models [8], and for object oriented
designs [9]. We further abstract component interfaces to incorporate interfaces to platforms and
elaborate on the importance of such classification.

In this short paper, we present a model for a component’s interactions which mainly classifies
interfaces as Application and Platform interfaces. This classification is useful to:

Understand the behavior of a component and its interaction with other components and
with the system on which it executes.

Evaluate the adequacy of languages and notations to specify component interfaces.
Inventory the range of possible inter-component interactions and use this inventory as the
basis for a semantic definition of architectural constructs.
Give some leverage on the opposition between functionality and packaging.

2. Modeling Component Interactions

2.1 The Model

Modeling software components is important to facilitate the understandability of the components
themselves and the understandability of activities related to CBSD such as adapting and
assembling components. The following figure shows a model that describes the component as
related to its surrounding artifacts with emphasis on types of interfaces. The model is used to
categorize component interactions.

 Figure 1 The Model

We distinguish the following model elements:

Internals (Private Aspects)
This section of the model represents the internal information and structure of a component. It
provides the actual functionality of the component as exposed by its interface. This element is
private to the component and it is not exposed to any other components or the platform on which
it runs. The component internals is characterized by encapsulating the decisions and hiding them
from other components.

Application Interface
Those interfaces define the interaction with other application artifacts such as other components
or applications. This interface represents the import and export relationship with other
components (or the middleware) with which the component interacts. A set of exported
interfaces represents the functionality that this component can provide. A set of imported
interfaces represent the functionalities that this module requires from other external components
which might be needed in the work progress of the component functional execution. We term
these interfaces as "Horizontal Channels" as they specify the interaction with other peer
components and application entities irrespective of the platform or hardware on which they run.
The horizontal channel allows us to identify:

The structure of messages sent/received from other component.
Timing issues as related to requests going to/from the component
Incompatibilities in data format, types and message protocol

Platform Interfaces
Those interfaces define the component interaction with the platform on which it executes. These
interfaces would include operating system calls, the underlying hardware technology, and
communication subsystems. For a component to run it should be supported by specific processor,
memory, communication equipment and probably other hardware as well. This type of
interaction is as important as interaction with other software components. It determines the
portability of the component and how it runs and executes on specific hardware. This layered
approach helps the designer in specifying and designing components that are independent of
programming languages and operating systems. Several implementations may have different
platform interfaces and yet have the same design and specifications. This interface layer is also
called "Vertical Channel" because it identifies interactions with lower layers of hardware not
with other peer components. This type of interfaces is essential for special type of applications
(embedded systems for example) in which 20-30 % of safety-related errors discovered were
related to these interfaces [4, 5]. The following are examples of platform interfaces:

Operating System
Hardware platform
Communication channels (and protocol stacks)
Compilers (if required to compile the component)

The Vertical Channel allows us to identify impacts of failures and risks as related:

Failure to detect and respond to operating system and communication event
Produce undesirable outputs to communication channels
Misunderstanding how the hardware operates
Portability to other platforms, (ex. a component running on Unix operating system should
be differentiated from those running on Windows based or on micro-controllers)

2.2 Component Interactions

Patterns of component interaction in component-based software engineering is another major

concern. Using the model of the component, we identify the following types of component
interactions (numbered as shown in figure 1):

a) Application Interfaces (Horizontal Channels)

a.1) Direct Interaction
Direct interaction are those from one component to the other, in this case a
component knows of the existence of other components and directly invokes one or
more of its services. This type of interaction creates a direct coupling between
components in the application.

a.2) Indirect Interaction
Components can interact with each other through a standardized middleware or
kernel. A component publishes its services to the middleware. Other components
can inquire about the possible supported services and require them without knowing
where the other component is located. Indirect interaction is established through a
standardized kernel, usually referred to as a middleware such as COM [1] or
CORBA [6].

b) Platform Interfaces (Vertical Channels)
Components interact with other operating system components, communication subsystems, or
other hardware components. These interaction protocols are determined by the nature and
functionality of the component as well as the underlying platform capabilities.

2.3 Example

The model presented in the previous section is closely related to the real practice of using
components in application development. For example, assume that we are developing a CORBA
object that sorts an array of integers and we are making the source code availabe as a reusable
component. We can identify the model elements as follows:

Internals: The sort mechanism is designed and coded in C++, this represents the private
aspects of the components.
Application Interfaces (Horizontal Channel): The application interface will be the
Interface Definition Language IDL interface [6] specifying the functionality available
(sorting) and its signature. The component can then be called through the middleware i.e
the ORB.
Platform Interfaces (Vertical Channel): To run this component on a Windows
environment (for example), a subset of the platform interfaces could be specified by:

Compile with : C++ compiler for windows
Run on: Windows Platform

Figure 2 An Example

Now assume that we want to develop the same component in Java.

Internals: The sort mechanism is designed and coded in Java.
Application Interfaces (Horizontal Channel): The application interface will still be an IDL
interface.
Platform Interfaces (Vertical Channel): The platform interfaces would include the Java
Virtual Machine for that specific platform.

3. Impact of Classifying Interfaces

Establishing a framework for understanding the adequacy of existing notations and
languages to specify different types of interfaces. For example one could argue that IDL is
adequate for application interfaces, Java Virtual Machines are suitable for platform
interfaces, or UML is generic enough for specifying internals and interfaces. We expect to
elaborate on such discussion during the Workshop.

Better understanding of interface mismatches. The model separates concerns abou
interfaces into two categroies: Issues related to timing and message exchange between
components, and issues related to hardware, communications, and other platform related
issues. i.e distinguishing portability and inter-operability properties of a component.
During the Workshop, we expect to discuss the Ariane5 problem in the context of this
model.

4. References

[1] Component Object Model home page http://www.microsoft.com/com/dcom.asp

[2] Digre, T.,"Business Object Component Architecture" IEEE Computer, Sept/Oct 1998,
pp60-69
[3] D’Souza, D. F., and Alan C. Wills "Objects, Components, and Frameworks with UML : The
Catalysis Approach" , ISBN 0-201-31012-0 Addison-Wesley, 1998
[4] Heimdahl, M., J. Thompson, and B. Czerny "Specification and Analysis of Intercomponent
Communication" IEEE Computer Magazine, April 1998
[5] Lutz, R., "Targeting Safety-Related Errors during software Requirements Analysis," Proc. of
First ACM SIGSOFT symposium on Foundations of Software Engineering, ACM Press, New
York 1993, pp95-106
[6] Object Management Group, "The Common Object Request Broker: Architecture and
Sepcification" revision 2.2, 1998 http://www.omg.org/corba/corbaiiop.html
[7] Brown, A., and K. Wallnau, "The Current State of CBSE", IEEE Software, Sept./Oct. 1998,
pp37-46
[8] Kruchten, P. "Modeling Component Systems with the Unified Modeling Language", First
Int’l Workshop on Component-Based Software Engineering, in conjunction with ICSE’98, Kyoto,
1998
[9] Tai, S., "A Connector Model for Object-Oriented Component Interaction", First Int’l
Workshop on Component-Based Software Engineering, in conjunction with ICSE’98, Kyoto,
1998

