
 A Reusable Syntax Directed Processing System

Author: Chuck Strempler

Microsoft Corporation

Microsoft Research – ComApps

chuckstr@microsoft.com

Last Updated: March 18, 1999

Abstract: This paper discusses a system under development that takes a representation of any
LL(k) language [1] and some source text written in that language and outputs a component
hierarchy representing that source. This hierarchy may an be intermediate representation of the
language or a stand-alone component composite.

To understand this paper it will be useful to have knowledge of Microsoft COM technology [2].
It will also be useful to have knowledge of our hierarchical component composition technology
called assemblies [3].

1. Syntax Directed Processing and Component Hierarchies *

2. Using SDPAssy For Syntax Directed Processing *

2.1 The SDPAssy Assembly *

2.2 A Simple Example Using SDPAssy *

3. References *

1. Syntax Directed Processing and Component Hierarchies

In our research, we’ve come across many instances requiring interpreting a language or translating a
language into another language. The following is a list of some of the problems we’ve encountered that
may be addressed using syntax directed processing:

C+Com Compiler- We use this tool to automate component generation and production of our
component type libraries for use in our assembly tools. It translates annotated C files into C code
and component type source files.
C+Com source wizard - This tool allows declarative specification of component attributes and
generates C+Com source files. It builds up an intermediate representation of a C+Com source file
and dynamically alters that representation as component attributes are added or changed.
IDL+Com Compiler- This tool allows type repositories to be built containing extended information
unavailable through normal interface definition processing. It translates a type specification
language into an IDL file and component type source files.
A component wiring specification language - This could be an interpreted language that
dynamically wires components together.

127

mailto:chuckstr@microsoft.com

Precise interface specification - This could be used to generate interface test and precondition
checking code from a rigorous specification.
Form layout specification - This could be used to generate user interface assemblies to implement
complex interfaces.

Analysis of these problems yielded the following list of requirements for a system that facilitates syntax
directed processing:

It must be reusable. That is, is must be usable for language-processing across varied domains.
This includes flexible processing of ambiguous language constructs.
It must be extensible. That is, allow for easy algorithm substitution in and augmentation of the
various phases of processing.
It must be able to generate an intermediate representation for compiling and interpreting and a
stand-alone composition for assembly creation.
It must support nested invocation for mixed languages.
It must support seamless error reporting.

Although existing syntax directed systems such as lex and yacc addressed some of these requirements,
we found the most flexible, complete solution was to develop a set of components each addressing a
particular phase of syntax directed processing, and use our assembly technology to combine them into an
extensible, reusable composite currently known as SDPAssy. SDPAssy generates either a component
hierarchy as the intermediate language representation or the language directed component hierarchy
assembly.

2. Using SDPAssy For Syntax Directed Processing

The following sections describe how the SDPAssy assembly addresses the above requirements and how
to use it to build assemblies, compilers and interpreters.

2.1 The SDPAssy Assembly

128

Figure 1 , The SDPAssy assembly. Please see [3] for a description of assemblies.

SDPAssy itself imports an error notification callback interface and exports an interface on the scanner to
specify the input source text, an interface on the generator or interpreter and interfaces on the component
hierarchy element to navigate and alter the hierarchy. Altering the hierarchy may be required for
applications such as the C+Com source generator described in Section 2.1. During language processing,
another instance of SDPAssy can be invoked to parse a contained language. This arises, for example, in
the C+Com compiler described in Section 2.1. C+Com files can import IDL+Com files to extract type
information from them.

The error handling element, CErrorProc, receives a pointer to an interface outside the assembly through
the ErrorNotify role, that is called back with a formatted error message and an error code when an error
occurs. Other top level elements (those listed in the diagram above) receive a pointer to CErrorProc so
that they can report errors.

The lexical analysis component, CScanner, is called from outside the assembly via the Input Source pin,
with the language source text to be tokenized. It calls CParser to process each token. CScanner is
specialized with a binary representation of the regular-expression grammar describing the tokens in the
source language and a keyword table. This binary representation is created once per token set outside
SDPAssy. This allows CScanner to reuse this binary representation to efficiently generate tokens for any
instances of source text with the given token set.

CParser generates a component hierarchy from the token stream. It is a predictive parser that will
recognize any LL(k) [1] language annotated with commands that tell the parser to have the component
hierarchy element add a new component to the hierarchy and/or call a method on an existing component.
CParser is specialized with a binary representation of the predictive parse table for the source language.
This binary representation is created once per language outside the SDPAssy assembly. This allows
parsing arbitrary source text in the source language without reanalyzing the language each time. The
language can also be annotated with commands that allow the parser to call some custom code to handle
ambiguous grammar conditions. One place where this is needed is in the C+Com compiler described in
Section 2.1. The C+Com grammar makes use of nested braces and matching a given ‘}’ with the correct
‘{‘ is required. Since the grammar representing this match is ambiguous, it cannot be handled by the
parser automatically. The C+Com language annotates the grammar with a reference to code that tracks
the correct brace to match and can resolve the ambiguity.

The TCompHierarchy element is a placeholder instantiated at assembly initialization time with an actual
component hierarchy implementation. This allows applications with differing intermediate representation
or assembly generation requirements to reuse the parser and scanner implementations while providing a
custom or extended component hierarchy element. The root component in the hierarchy, must implement
interfaces to traverse and alter the hierarchy as well as an interface (IParseHelper) that allows
communication between the hierarchy components and the parser. Other components in the hierarchy
(i.e. those that are not used to specialize the TCompHierarchy place holder), may only implement
IParseHelper. The example presented in Section 2.2 shows how the parser calls IParseHelper methods to
direct the creation of the component hierarchy. It is worth noting that in assembly generation, the
component hierarchy is the final product and the generator/interpreter is not needed. Currently, we only
use domain specific hierarchy elements. Because the hierarchy models language entities, new
components must be written for every language in which these entities are different. It seems plausible to
have a reusable hierarchy component that keeps track of children by type and properties by name. This
would allow a user of SDPAssy to write only a custom generator or interpreter and not worry about the
intermediate representation at all.

The TIntGen element is also a placeholder that is instantiated with the actual interpreter or generator
implementation at assembly initialization time. This component receives a pointer to the root of the
component hierarchy, and can then navigate the hierarchy through private interfaces.

2.2 A Simple Example Using SDPAssy

This example illustrates the use of SDPAssy to perform syntax directed processing with a simple

129

language. The language is a simple form description language and is presented in annotated BNF form
with terminals in caps, non terminals lower case and annotations in bold. The annotations are not part of
the grammar itself but meta language tags that direct the parser to perform some action. They are
attached to their following terminals or non terminals in the parse table so that the parser operates only on
grammar symbols. # indicates the beginning of a compound annotation, $ indicates to the parser that the
most recently created hierarchy component should be made current and may annotate non terminals,
CREATE <clsid> causes a new hierarchy component of type <clsid> to be created and passes this as an
argument to the current hierarchy component’s IParseHelper::Create call. All other annotations are tag
names which are passed as arguments to the current hierarchy component’s IParseHelper::Call along
with the token being processed.

(1)forml -> #CREATE <formclsid> FORM #$NAME STRING #$X INT #$Y INT BEGIN $fieldl END forml

(2)forml -> null

(3)fieldl -> #CREATE <buttonclsid> BUTTON #$NAME STRING #$X INT #$Y INT #$FORM STRING fieldl

(4)fieldl -> #CREATE <labelclsid> LABEL #$NAME STRING #$X INT #$Y INT fieldl

(5)fieldl -> #CREATE <editclsid> EDIT #$NAME STRING #$X INT #$Y INT fieldl

(6)fieldl -> null

Here is a very small example of the language:

form Form1 10 10

begin

button Button1 0 0 Form2

end

Form Form2 10 10

begin

label "Look at this:" 0 0

edit Edit1 100 0

end

In this example, the TCompHierarchy is initialized with CFormRoot. The result of processing the sample
form description language is the assembly in Figure 2a.

130

Figure 2, The CFormRoot assembly generated by SDPAssy.

Here is a derivation sequence and the corresponding semantic actions taken by the component hierarchy.
The number to the left of the hyphen in each paragraph below corresponds to the rule the parser applies
at that point in the parsing. The number is the rule number from the form description grammar listed
above:

1 – The FORM token is matched by the parser. The annotation #CREATE <formclsid> resulted in a parse
table entry for that token match notifying the parser to create a new component of type <formclsid> and
pass it to the current (root) hierarchy component’s IParseHelper::Create method. The parser continues
and the STRING token is matched by "Form1" in the source. The #$NAME annotation resulted in a parse
table entry for this token match notifying the parser to set the current component to the newly created
form (the $ triggered this) and call the current component’s IParseHelper::Call with the annotation name
(NAME in this case) and the token. The current component is then reset to the old (root) component.
Similarly, the INT, INT and BEGIN tokens are matched with the 10, 10 and begin source text respectively.
In each case, the current component is set to the new form component and its IParseHelper::Call is called
with the annotation name and the current token. Since the non terminal fieldl is marked with the $
annotation, the current component becomes the Form1 component for all of the field list processing. This
sequence allows the root component to wire in Form1 and export its IForm interface, and to set the form’s
internal name, X, and Y coordinate attributes.

3 – The button token is matched which causes a new button hierarchy component to be created and
passed to the current component (Form1). Form1’s IParseHelper::Create is called to wire the field into the
form. The NAME, X, Y and FORM attributes are set for the new button due to the matching of the
STRING, INT, INT and STRING tokens to "Button1", 0, 0 and "Form2" respectively and the resulting calls
to the button’s IParseHelper::Call.

131

6 – There are no more fields left in Form1 and no annotations here. The END token is matched from rule
1 and the current component is reset to the root.

1 – The FORM token is matched resulting in Form2 being created and passed to the root’s
IParseHelper::Create. The NAME, X and Y properties are set for Form2. The BEGIN token is matched.
The current component is set to the newly created form when the non terminal fieldl is processed. The
wiring of Form1’s button to form2 could also be done in the root’s IParseHelper::Create since Form2 is a
known entity now. This is the form that will appear when the user clicks the button in form1.

4 – The LABEL token is matched resulting in the creation of a new label component. Form2’s
IParseHelper::Create is called so that the new field can be wired into the form. The NAME, X and Y
attributes are set using the label’s IParseHelper::Call method as a result of matching the label name, X
and Y coordinate tokens.

5 – The EDIT token is matched resulting in the creation of the edit component and its wiring into the
assembly via the call to form2’s IParseHelper::Create. The NAME, X and Y attributes are set for the edit
field as a result of matching the edit name, x and y coordinate tokens.

6 – There are no more fields left for form2. The END token for form2 is matched in rule1.

2 – The ENDOFINPUT token is matched and processing is complete.

An external component could extract the resulting assembly’s root IForm interface (the one for form1),
through the root form pin and call IForm::Display to display form1. Clicking on the button in form1 would
result in the calling of form2’s IForm::Display.

3. References

[1] Aho, Alfred; Sethi, Ravi; Ullman Jeffrey; Section 4.4 Compilers Principals, Techniques and Tools,
Addison-Wesley, 1988.

[2] Microsoft, Papers on COM, http://www.microsoft.com/com/dcom.asp.

[3] Peltz, Chris, "A Hierarchical Technique For Composing COM Based Components", 1999.

Back to top

Copyright © 1999 Microsoft Corporation. All rights reserved

Send feedback and questions to the MS-Research ComApps group

Home

132

