
Automating Interoperabilty For
Heterogeneous Software Components

Alan Kaplan 
Clemson University, Department of Computer Science
Box 341906, Clemson, SC 29634-1906 USA
kaplan@cs.clemson.edu, 

Bradley Schmerl 
Clemson University, Department of Computer Science
Box 341906, Clemson, SC 29634-1906 USA
schmerl@cs.clemson.edu, 

Jack C. Wileden 
University of Massachusetts, Department of Computer Science
Box 34610, Amherst, MA 01003-4610 USA
wileden@cs.umass.edu, 

This position paper addresses Section 4, Research Issues and Directions, in the Proposed Outline
for Handbook of CBSE. Specifically, this paper discusses research issues and directions related
to the problem of assembling and integrating software components that have been constructed in
different programming languages. This problem is frequently termed the interoperability
problem. We claim that the interoperability problem is a fundamental concern in the area of
component-based software engineering. 

Interest in interoperation among software components developed using multiple programming
languages is growing rapidly in the software engineering and programming languages
community. Reusable software libraries and integration with legacy systems are two common
interoperability problems faced by software developers. The expected growth and acceptance of
the Internet along with the advent of new programming languages strongly suggest that
interoperability will become an even greater issue in the coming years. Although various
software engineering tools and programming language constructs supporting interoperation have
been proposed and used in the past, these approaches do not meet the demands imposed by
today’s rapidly evolving heterogeneous computing environment. They are generally difficult to
use and prone to error, often forcing developers to waste valuable time dealing with the
complexities of a particular interoperability mechanism. 

Various software engineering tools and programming language constructs supporting
interoperation have been proposed and used in the past. Examples of language-based approaches
include the C++ extern construct [1] and the Java Native Interface (JNI) [2], each of which
support interoperation with the C programming language. In recent years, a myriad of alternative,
sometimes competing, interoperability mechanisms (frequently referred to as middleware or
componentware), has been developed. Instead of using specific language constructs, these
mechanisms generally rely on a combination of specification languages or intermediaries, code
generators and/or highly specialized design styles to achieve interoperability. Examples here



include OMG’s CORBA [3], Xerox Parc’s ILU [4], Microsoft’s OLE/DCOM [5], ODMG’s ODL
[6] and Sun’s RMI[7]. 

Despite, or perhaps due to, their number and variety, contemporary interoperability mechanisms
are difficult to use and applications that require interoperability mechanisms are difficult to
engineer and maintain. First, the choice of a specific interoperability mechanism often becomes
inextricably intertwined with the application. This not only hinders development, but makes it
extremely difficult, if not infeasible, to change the interoperability mechanism at a later point
during the application’s lifetime. Second, applications that require access to pre-existing
components often force programmers to re-engineer these components and/or the application
itself, thus further reducing the flexibility and robustness of an application. Third, contemporary
approaches to interoperability demand far too much programmer involvement in low level details
to be appealing to most software developers. Although some of these approaches provide a
modicum of automated support, in general they are not well-integrated and require manual
intervention, thus making them tedious to use and prone to error. As a result, they force software
developers to waste valuable time dealing with the complexities of a particular interoperability
mechanism, instead of focusing on the problem domain. 

We are currently working on several projects that attempt to address these issues [8,9,10]. The
details of these projects are beyond the scope of this position paper. However, they each share
the overall goal of trying to hide the underlying interoperability mechanism for heterogeneous
software components. For example, we are currently developing and experimenting with a tool
that automates interoperability between Java and C++ components. Specifically, the tool allows
engineers to create Java class interfaces to existing C++ class libraries using either the Java
Native Interface or CORBA. The figure below provides a conceptual architecture of this tool: 

 

The purpose of this tool is to provide Java interfaces to existing C++ classes. The tool takes as
input the C++ class interface and implementation definitions. The user of the tool also indicates
whether JNI or CORBA should be used as the underlying interoperability mechanism. The tool
analyzes the C++ class interface and produces a corresponding Java class. Specifically, all public
C++ methods are provided in its Java counterpart. Note that the tool does not simply translate
from C++ to Java. For example, instance variables defined in the C++ class are not created in the



generated Java class. Similarly, private method members are not created in the generated Java
class. The tool essentially produces a Java proxy for the C++ class. The tool also automatically
generates the required Java-C++ interoperability code (as dictated by JNI or CORBA). Finally,
the tool may modify the implementation of a C++ class; however, the C++ class interface
remains unchanged. Currently, our tool is only in a prototype stage. We are in the process of
refining its capabilities and experimenting with techniques to make it more robust. The tool
presently only allows for invoking C++ from Java. We intend to support the invoking Java from
C++ in the near future. We are also discovering interesting phenomena that arise when trying to
provide transparent interoperation between two seemingly similar object-oriented languages. For
example, C++ allows: 

pointers to pointers to pointers and so on 
multiple inheritance 
virtual and non-virtual methods 

At this stage, it is not clear how to provide corresponding constructs in Java. Our approach is
unique compared to existing approaches in that: 

It does not require the use of separate languages and/or type systems (such as CORBA’s
IDL) to achieve component interoperability. Our tool, working much like a compiler or
translator, analyzes the component interfaces and generates the necessary code allowing
heterogeneous components to interoperate. 
It allows the possibility of employing different interoperability mechanisms.This allows
programmers to develop components without having to commit to a particular
interoperability mechanism. For example, an application may choose to integrate
components into a single address space (e.g., using JNI) or combine components in a
distributed environment (e.g., using CORBA). 
Components provide the same interface independent of an underlying interoperability
mechanism. In other words, the decision to interoperate has minimal impact on the
component’s interface. While contemporary approaches pollute the component code space
with interoperability-specific code, our tools ensures that a component’s interface remains
interoperability code-free. 

In summary, it is our position that interoperability is a fundamental concern in component-based
software engineering. Although advances in programming language technology have yielded
numerous improvements in the construction of components, it is clear that no single
programming language will ever dominate software engineering practices. Therefore, new tools
and techniques are needed to help software engineers interoperate among heterogeneous
components. In this position paper, we have briefly outlined several related research issues and
directions. We have also outlined some of our own work that addresses this area. 

REFERENCES 

1. Stanley B. Lippman. C++ Primer, chapter 4, pages 213-214. Addison-Wesley, second
edition, 1993. 

2. Sun Microsystems Inc. Java native interface, May 1997.



http://java.sun.com/products/jdk/1.1/docs/guide/jni/spec/jniTOC.doc.html 

3. Object Management Group. The Common Object Request Broker: Architecture and
Specification, August 1997. Revision 2.1. 

4. Bill Janssen and Mike Spreitzer. ILU: Inter-language unification via object modules. In
Workshop on Multi-Language Object Models, Portland, OR, August 1994 (in conjunction
with OOPSLA’94). 

5. Kraig Brockschmidt. Inside OLE, 2nd Edition. Microsoft Press, 1995. 

6. R.G.G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie
Gamerman, David Jordan, Adam Springer, Henry Strickland, and Drew Wade, editors. The
Object Database Standard: ODMG 2.0. Series in Data Management Systems. Morgan
Kaufmann, San Francisco, CA, 1997. 

7. Sun Microsystems Inc. Java remote method invocation, May 1997.
http://java.sun.com:80/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html. 

8. A. Kaplan, J. V.E. Ridgway, and J.C. Wileden. Why IDLs are not ideal. In Proceedings of
the Ninth IEEE International Workshop on Software Specification and Design, Ise-Shima,
Japan, April 1998. 

9. Alan Kaplan and Jack C. Wileden. Toward painless polylingual persistence. In Seventh
International Workshop on Persistence Object Systems, Cape May, NJ, May 1996. 

10. Daniel J. Barrett, Alan Kaplan, and Jack C. Wileden. Automated support for seamless
interoperability in polylingual software systems. In The Fourth Symposium on the
Foundations of Software Engineering, San Francisco, CA, October 1996. 

Clemson University, Department of Computer Science
Box 341906, Clemson, SC 29634-1906 USA
kaplan@cs.clemson.edu, http://www.cs.clemson.edu/~kaplan

Alan Kaplan
Last modified: Thu Mar 18 11:29:34 EST 1999 


