
An Approach to Software Component Specification

Jun Han
Peninsula School of Computing and Information Technology

Monash University, Melbourne, Australia
 
 

Abstract.  Current models for software components have made component-based software
engineering practical. However, these models are limited in the sense that their support for the
characterization/specification of software components  primarily deals with syntactic issues. To
avoid mismatch and misuse of components, more comprehensive specification of software
components is required, especially in a scenario where components are dynamically discovered
and used at run-time over corporate intranets and the Internet. Our approach to software
component specification aims at comprehensive interface modelling/packaging for software
components. It deals with the semantic, usage, quality as well as syntactic aspects of software
component specification. 

Introduction

Software systems form an essential part of most enterprises’ business infrastructure, and become
increasingly complex. In today’s global market, these enterprises have to continuously adjust and
improve their business practices to maintain a competitive edge. Such changes to business
practices often raise requirements for change to their underlying software systems and the need
for new systems, which have to be fulfilled in a timely fashion. It is in this business context that
being able to assemble or adapt software systems with reusable components proves vital. 

We have seen examples of integrating software components or packages into systems to achieve
specific business objectives of enterprises. Perhaps, the most prominent is the use of
Commercial-Off-The-Shelf (COTS) software packages in enterprise systems. Experience has
shown that even with advanced technological support, in general, it is not an easy task to
assemble software components into systems. A major issue of concern is the mismatches of the
components in the context of an assembled system, especially when the mismatches are not
easily identifiable [Garlan et al, 1995]. The hard-to-identify mismatches are largely due to the
fact that the capability of the components are not clearly described or understood through their
interfaces. Most commercially available software components are delivered in binary form. We
have to rely on the components’ interface description to understand their exact capability. Even
with the components’ development documentation available, people would certainly prefer or can
only afford to explore their interface descriptions rather than digesting their development details.
Furthermore, interface descriptions in natural languages do not provide the level of precision
required for component understanding, and therefore have resulted in the above mentioned
mismatches. When discovering components and assembling systems at run-time over corporate
intranets and the Internet, it becomes a must that the components have precise and even
comprehensive interface descriptions. 

Most current approaches for component interface definition deal with primarily syntactic issues,
like those of the CORBA Interface Definition Language (IDL). To gain a clear understanding of



a component’s exact capability, other essential aspects of the component should also be
described, including the semantics of the interface elements, their relationships, the assumed
contexts of use, and the quality attributes. Our approach to software component specification
deals with these aspects  through comprehensive interface specification. It has been developed
and applied during a large-scale telecommunications R&D project at a multi-national company.
It provides not only the basis of notational and tool support for software component
specification, but also the basis of methodological guidance for architecture-directed and
component-based system development, composition and integration. 

While our framework highlights comprehensive packaging, it is unrealistic to expect that every
component is to be defined formally and comprehensively in practice. For example, JavaBeans
and COM components are still very useful even though their interface definitions are mainly
syntactic. In these cases, the full understanding of the components has to rely on other means,
e.g., informal documents. Or, the user of the component is happy with the partial information
that has been offered by the interface. It is very important to allow such flexibility in packaging
software components. It is the component user who decides whether the provided interface
information is enough to warrant the adoption of the component in his/her use context. This is
particularly true for the quality attributes of the component. We generally refer to this flexibility
as "sliding characterization/specification". 

An analysis of existing industrial component models and the need for comprehensive component
characterization can be found in [Han, 1998a]. In the following sections, we give a brief account
of our approach to software component specification. Further details can be found in [Han,
1998b; Han and Zheng, 1998]. 

An overview of the approach

As argued earlier, proper characterization of software components is essential to their effective
management and use in the context of component-based software engineering. While there have
been industrial and experimental projects that build systems from (existing) components, the
approaches taken are ad hoc and heavily rely on the specifics of the systems and components
concerned. That is, component-based software engineering is still very much in its infancy.
Characterization of components through comprehensive interface specification is a step towards
systematic approaches to CBSE and their enabling technologies. 

Our approach to component specification aims to provide a basis for the development,
management and use of components. It has four aspects. First, there is the signature of the
component, which forms the basis for  the component’s interaction with the outside world and
deals with the syntactic aspect of  the necessary mechanisms for such interaction (i.e., properties,
operations and events). The next aspect of component specification concerns the semantics of the
component interaction, including the semantic specification of individual signature elements and
more importantly additional constraints on the component signature in terms of their proper use.
The component signature and its semantic constraints define the overall capability of the
component. The third aspect of component specification concerns the packaging of the interface
signature according to the component’s roles in given scenarios of use, so that the component
interface has different configurations depending on the use contexts. The fourth aspect of
component specification is about the characterization of the component in terms of their



non-functional properties or quality attributes (code named illities [Thompson, 1998]). 

Interface signature

Fundamental to a component’s interface is its signature that characterizes its functionality. The
component interface signature forms the basis of all other aspects of the component interface. As
commonly recognised, the interface signature of a component comprises  properties, operations
and events. A software component may have a number of properties externally observable. These
properties form an essential part of the component interface, i.e., the observable structural
elements of the component. The users (including people and other software components) may
use (i.e., observe and even change) their values, to understand and influence the component’s
behaviour. A common use of component properties is for component customisation and
configuration at the time of use. It should be noted that certain component properties can only be
observed, but not changed. 

Another aspect of a component signature is the operations, with which the outside world
interacts with the component. The operations capture the dynamic behavioural capability of the
component, and represent the service/functionality that the component provides. Besides
proactive control (usually in the form of explicit operation invocation or message passing),
another form of control used to realise system behaviour is reactive control (usually in the form
of event-driven implicit operation invocation or message passing). It is often the case that certain
aspects of a system are better captured through proactive control via operations, while other
aspects of the system are better captured in the form of reactive control via events. To facilitate
reactive control, a component may generate events from time to time, which other components in
the system may choose to respond to. In this type of event-based component interactions, there
may be none or many responses to an event, and they may change as time goes on. As such, this
model of interaction allows communication channels to be established dynamically, and gives
the system the capability of dynamic configuration. 

In our approach, the specification of interface signature takes a form similar to the current
Interface Definition Languages found in CORBA and Java, including assemble-time and
run-time properties, operations and events. 

Interface constraints

The signature of a component interface only spells out the individual elements of the component
for interaction in mostly syntactic terms. In addition to the constraints imposed by their
associated types, the properties and operations of a component interface may be subject to a
number of further semantic constraints regarding their use. In general, there are two types of such
constraints: those on individual elements and those concerning the relationships among the
elements. Examples of the first type are the definition of the operation semantics (say, in terms of
pre-/post-conditions) and range constraints on properties. There are a variety of constraints of the
second type. For example, different properties may be inter-related in terms of their value
settings. An operation can only be invoked when a specific property value is in a given range.
One operation has to be immediately invoked after another operation’s invocation. 

The explicit specification of semantic properties are important. First of all, they form part of the



defining characteristics of the component. They make more precise about the capability of the
component. Furthermore, it is essential for the user of the component to understand these
constraints. Only then, proper use of the component can be guaranteed and therefore the
composed system’s behaviour is predictable. Without such constraints, the proper understanding
and use of the component will be much harder. Informal and possibly incomplete and imprecise
documentation has to be relied on. While we all know the dangers and problems associated with
such a scenario, it has even greater significance for component based software engineering. This
is because the interface definition of a component may well be the only source of information for
the component as we may not have access to its source code or any other development
documentation, e.g., in a scenario where components are discovered and used dynamically at
run-time. 

The use of pre-/post-conditions for defining operation semantics has been well studied, such as
those used in Eiffel [Meyer, 1997] and Catalysis [D’Souza and Wills, 1998]. Our approach
focuses on constraints concerning the relationships among signature elements. A common
example in telecommunications systems is that a system module has to be initialised through a
sequence of operations before it is enabled to accept normal requests (e.g., invocations of further
operations). Specific mechanisms are available to specify this type of constraints in our
approach. 

Interface packaging and configurations

The signature and the semantic constraints of a component define the overall capability of the
component. For the component to be used, certain packaging is required. It involves two aspects:
(1) the component plays different roles in a given context, and (2) the component may be used in
different types of contexts. In a particular use scenario, a component usually interacts with a
number of other components, and plays specific roles relative to them. The interactions between
the component concerned and these other components may differ depending on the components
and their related perspectives. When interacting with a particular type of component from a
specific perspective, for example, only certain properties are visible, only some operations are
applicable and some further constraints on properties and operations may apply. More
specifically, for example, the value range of a property may be further restricted in a particular
role. In general, this suggests the need for defining perspective/role-oriented interaction protocols
for a given component, i.e., an interface configuration, as the effect of interface packaging. Since
the role-based configuration definition is oriented towards component interaction, a role-based
interface of a component should include not only what the component provides but also what it
requires from the other end (another component) of the interaction. 

Scenarios provide the contexts of use for a component. A component may be used in different
scenarios and has different role partitions in these scenarios. For a component, therefore, there
may be the need for different sets of interaction protocols, with each set for a scenario in which
the component is to be used. This suggests that a component may have different interface
configurations. In principle, an interface configuration should be defined in terms of both the
component and the use scenario, and it relates the component to the use context. 

Usually, when a component is designed, the designer has one or more use scenarios in mind.
Therefore, a few packaging configurations may be defined for the component interface. When a



new use scenario is discovered, a new packaging configuration may be added. It should be noted
that the packaging of an interface configuration is subject to the component’s underlying
capability as defined by the component’s signature and semantic constraints and will not alter this
defined capability. 

The importance of interface packaging can not be over emphasised. It serves to relate the
component to a context of use. In fact, much of the requirements for the component is derived
from the use scenarios. The roles that a component plays in a use context are vital to the
architectural design of the enclosing system. It provides the basis for defining the interactions
between the components of the system and realising the system functionality. It enables the
relative independent development of the system components with clearly defined interfaces as
well as requirements. 

In our approach, mechanisms are provided for specifying interface configurations and roles
within configurations. Additional constraints about component interaction can be specified in
association with roles and configurations. 

Quality attributes (illities)

Another aspect of a component is its non-functional properties or quality attributes, such as
security, performance and reliability. In the context of building systems from existing
components, the characterization of the components’ illities and their impact on their enclosing
systems are particularly important because the components are usually provided as blackboxes.
However, there is not much work done in this area. Therefore, there is an urgent need to develop
the various illity models in the context of software components and composition. For a particular
quality attribute, we need to address two issues: (1) how to characterize the quality attribute for a
component, and (2) how to analyse the component property’s impact on the enclosing system in a
given context of use (i.e., in the context of a system architecture). A related issue is whether the
characterization of the quality attribute will change in different contexts of use. Currently, we are
investigating the security properties of software components and their impact on system
composition in the context of developing distributed electronic commerce systems [Han and
Zheng, 1998]. In general, the interface definition of component illity characterization will be
dependent on the specific characterization models developed. While we do not have definite
models available yet, the component specification framework proposed in our approach can be
extended to accommodate new models concerning quality attributes. 

Summary

In our approach to software component specification, the properties, operation and events form
the signature of the component interface. The constraints further restrict and make precise the
definition (and hence the usage) of the component interface. The signature and the constraints
characterize the component capability. The configurations are based on the component use
scenarios, and define specialised usages of the component. A configuration identifies the roles
and defines the role-based interfaces of the component in a given use context. The component’s
non-functional properties are useful in assessing the component’s usability in given situations and
in analysing properties of the enclosing systems. In general, the proposed framework provides
the basis of notational and tool support for component-based system development, composition



and integration. It also contributes to the standardisation of software component specification
and its infrastructural support. 

Our approach to component  specification has been developed and applied in the context of a
real-world industrial project that concerns the development of a telecommunications access
network system involving software and hardware codesign. Combined with object oriented
analysis techniques such as scenario analysis, the approach had been used in the system’s
architecture design. Immediate benefits of using this framework have been the clear definition of
the subsystems/modules’ capabilities through their interfaces, the clear identification of the
interactions between the modules, and the analysis of system behaviour at architectural level.
This has significantly reduced the interaction between the teams responsible for the various
modules, and avoided many of the architectural changes later in the development cycle that had
been experienced in earlier projects. 

References

1. D. D’Souza and A.C. Wills, 1998. Objects, Components and Frameworks with UML: The
Catalysis Approach. Addison-Wesley. 

2. D. Garlan, R. Allen and J. Ockerbloom, 1995. Architectural Mismatch: Why reuse is so
hard. IEEE Software, 12(6): 17-26. 

3. J. Han, 1998a. Characterization of components. In Proceedings of 1998 International
Workshop on Component-Based Software Engineering, Kyoto, Japan, pages 39-42. 

4. J. Han, 1998b. A Comprehensive interface definition framework for software components.
In Proceedings of 1998 Asia-Pacific Software Engineering Conference, Taipei, Taiwan,
Pages 110-117. IEEE Computer Society Press. 

5. J. Han and Y. Zheng, 1998. Security Characterisation and integrity assurance for software
components and component-based systems. In Proceedings of 1998 Australiasian
Workshop on Software Architectures, Melbourne, Australia, pages 83-89. 

6. B. Meyer, 1997. Object-Oriented Software Construction, 2nd edition. Prentice Hall. 
7. C. Thompson. Workshop on Compositional Software Architectures: Workshop Report.

http://www.objs.com/workshops/ws9801/report.html, Monterey, USA. 


