
An Evaluation of Component Adaptation
Techniques
George T. Heineman

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609, USA
heineman@cs.wpi.edu

WPI-CS-TR-99-04

Abstract:

One of the many difficulties in making Component-Based Software Engineering (CBSE) a reality is that
software components may require adaptation when constructing applications from COTS components. We
survey the literature to discover various approaches to component adaptation and evaluated these
approaches against a set of requirements for component adaptation mechanisms. We also discuss
differences between adaptation of software components and extension of object-oriented classes.

1. Introduction
2. Motivation

2.1 Adaptation, Evolution, Customization
2.2 Differences between adapting components and classes

3. Requirements for Component Adaptation Techniques
3.1 Adapted component and original component C

3.2 Adaptation technique
3.3 Adaptation mechanism
3.4 Adaptation as a facet of Integration
3.5 Architectural evolution

4. Discussion
5. Conclusion
References

1. Introduction
The closing sentence of a recent report on the current state of CBSE states that the growing use of external
components will demand improvements in how components are documented, assembled, adapted, and
customized [3]. This position paper addresses the issue of adaptation.

We have argued in [8, 6, 7, 9] that a true component marketplace will only exist when application builders
can adapt software components to work within their application. For this position paper, we surveyed the
literature for different approaches to adapting software components. Our primary contribution is to show
that component adaptation is a highly relevant problem to CBSE. Component adaptation is sufficiently
different from software evolution that it requires new techniques and certainly new understanding to solve

its challenges.

We first motivate the need to adapt third-party COTS components after they have been designed,
implemented, and made available for purchase. We then discuss the differences between adaptation of
components and adaptation of object-oriented programs. We then evaluate various approaches to
component adaptation against a set of requirements for adaptation mechanisms.

2. Motivation
An application builder has designed and partially implemented a software system using several reusable
in-house software components. The builder finds an externally available third-party software component
that satisfies some desired functionality or behavior. Because there are such difficulties in accurately
specifying software, however, the builder is not totally sure that the component will completely perform all
the desired tasks; in fact, the component may contain additional unneeded features that are incompatible
with the original system. There is enough evidence, however, to install the component and try to use it, so
the builder proceeds.

The application builder must then integrate the component into the original system; this task may be
complicated by syntactic incompatibilities between the interfaces that need to communicate with one
another. The builder can either a) modify the original system to overcome these incompatibilities; b)
modify the component; or c) introduce a component adaptor [19] or some other wrapper between the
system and the component. As Hölzle shows, however, there are complications when multiple components
must communicate with each other while they are contained within some form of wrapper object [17].

Once all syntactic problems are overcome, however, there will likely still be situations where the
functionality or behavior of the component needs to be modified according to the needs of the application
builder. Component designers cannot, of course, foresee every possible use of their component, and they
cannot respond to every modification request from their users. We need to create mechanisms, therefore,
whereby application-builders can easily adapt third-party components without requiring knowledge of the
source code.

As more and more third-party components are added to the application - or when an application is
constructed entirely from such components - the only solution that will scale is one that minimizes the
effort to make modifications to the original application and to adapt the software components.

2.1 Adaptation, Evolution, Customization

The players in this drama are the component designer and the application builder. We make the distinction
between software evolution, where component designers modify the software component they designed,
and adaptation, where an application builder adapts a third-party component for a (possibly radically)
different use. If the component designer were requested to adapt a component, the designer would likely
select a minimal set of changes because of direct knowledge of the component. The application builder
does not have this advantage, nor will the builder be able to acquire this knowledge simply from the source
code and documentation. The application builder, thus, needs help to successfully adapt components. We
also differentiate adaptation from customization; an end-user customized a software component by
choosing from a fixed set of options (such as OIA/D [11]). An end-user adapts a software component by
writing new code to alter existing functionality or behavior.

2.2 Differences between adapting components and classes

Object-Oriented Design (OOD) embodies the principle of design for change, a design principle first stated
by Parnas [15] that encourages Software Engineers to modularize code to minimize the impact of future
changes. OOD has two mechanisms that serve this purpose. First by designing classes with a public
interface and private implementation, a class supports information hiding. The class designer can insulate
the clients of the class from the internal implementation, which usually changes more frequently than the
interface definition. Second, inheritance is a mechanism by which an object acquires characteristics from
one or more other objects [1]. Inheritance can be classified as essential, referring to the inheritance of
behavior or an externally visible characteristic, or incidental, referring to the inheritance of part, or all, of
an underlying implementation of a more general object. Object-oriented designers learn early on that
incidental inheritance, done strictly for the purpose of reusing existing code, leads to poor design.

In the Software Architecture literature, inheritance is a modeling vehicle used by various Architectural
Description Languages (ADLs), such as ACME [4] to specify when interface inheritance occurs (there are
exceptions, notably the use of object-oriented typing as seen in [18]). We argue, however, that inheritance
should not be used to create new components from parts of old components.

One of the major differences between CBSE and OO is that engineers wishing to adapt an existing
object-oriented program must perform the difficult task of understanding (often complex) class hierarchies.
There is a tacit assumption with object-oriented technology that the designer of the system and the
maintainer/adapter are one and the same. If this is not the case, however, the adapter must determine the
set of classes to modify to make the change such that the original integrity is not broken. Often, additional
leaf classes are added to a class hierarchy to avoid changing the original class structure when it would have
been better to make modifications to existing classes. We seek to find ways for an application builder to
adapt a component with only knowledge of its documented interface.

3. Requirements for Component Adaptation
Techniques
To set the context for our comparison, consider an application builder that acquires a component C from a
third-party. The application builder employs an adaptation technique to construct a new component

from the original component C. The technique may rely only on ad-hoc solutions or it may provide some
specific adaptation mechanism. is then used as a component within the target application. If C already

exists as a component in an application, we classify the situation as adaptive evolution. Contrast this with a
standard integration problem where the application builder must modify the application so that component
C can be used as is.

We compiled a list of requirements from [2, 8, 10]. We considered three additional requirements for this
paper and have consolidated the total list to a set of eleven possible requirements which we have divided
into requirements on C and , requirements on the adaptation technique, and requirements on the

adaptation mechanism.

3.1 Adapted component and original component C

1. Homogeneous - the code that uses should use in the same manner as it would have used C

([8], was transparent in [2]).
2. Conservative - aspects of C there were not adapted should be accessible without explicit effort by

 (was included as transparent in [2]).

3. Ignorant - C should have no knowledge of its adaptations (was included as transparent in [2]).
4. Identity - C should continue to retain its own identity as a separate entity; this eases the way in which

future updates of the component will be handled [10].
5. Composable - should itself be open to future adaptations; it should be straightforward to

compose together a set of desired adaptations [2].

3.2 Adaptation technique

6. Configurable - the adaptation technique should be able to parameterize and apply a particular
adaptation (the generic part) to many different components (the specific part) [2].

7. Black-box - the adaptation technique should have no knowledge of the internal implementation of
C [2, 10].

8. Architectural focus - There should be a global description of the architecture of the target application
together with a specification of C and a modified description of [6]; the specifications of C and

 must be different. This will enable the application builder to specify the adaptation(s) at an

architectural level.
9. Framework independent - the adaptation technique must not be dependent upon the component

framework to which C belongs. For example, the technique must function equally well on
COM [12], CORBA [5], and JavaBeans [13] components.

3.3 Adaptation mechanism

10. Embedded - the adaptation mechanism must exist within C before C can be adapted into [8].

11. Language independent - the adaptation mechanism must not be dependent upon the language used to
implement C [8]; this requirement also pertains to the adaptation technique.

It may not be possible for an adaptation mechanism to satisfy each requirement, since these requirements
are drawn from disparate sources. There is no clear indication on how to prioritize these requirements.
Note that some of the requirements in Figure 1 are partly contradictory: R3 and R10, for example. Others
are strongly related, such as R1-R3. By evaluating component adaptation mechanisms against these
requirements, we can determine those requirements that are the most useful.

3.4 Adaptation as a facet of Integration

Incorporating third-party software components will always require integration, but there is not enough
emphasis on the necessary adaptation that must take place. Again, we differentiate adaptation from
customization whereby the customer simply selects from a pre-determined set of options. Some have
proposed wrapping or mediation as integration mechanisms, but these only partially satisfy the integration
aspects, and do not solve the problems of adaptation.

3.5 Architectural evolution

Figure 1 lists only those approaches that adapt a software component to create a new component. There are
several research efforts concerned with Architectural Evolution, namely the addition, removal, or
replacement of components, connectors, or changes to the configuration of components and connectors.
Some examples are ArchStudio [14] and Simplex [16]. There are also different efforts towards creating
software systems whose architecture can change dynamically at run-time to adjust as needed to changing
circumstances; these are dynamic versions of architectural evolution.

Figure 1: Comparison matrix

4. Discussion
The comparison matrix in Figure 1 reveals various correlations between the requirements and mechanisms.
There is strong agreement that requirements R1,R5,R9 are suitable for adaptation mechanisms. This
reflects, perhaps, the fact that these requirements relate to structural issues. Requirements R6 and R8 only
have one proponent each, namely Superimposition [2] and Active Interfaces [8], but this is simply a way
these techniques differentiate themselves from others in the literature.

The sharpest division on these requirements (where at least two techniques vote positive and two vote
negative) are embedded (R10) and language-independence (R11). Note that these requirements both refer
to the type of adaptation mechanism employed by the adaptation technique. Most component designers
select a programming language with only a passing attention to future adaptation needs. Object-oriented
programming languages, however, automatically enable adaptation because inheritance is built-in. The
Active Interface approach [8] only requires small hooks embedded into a component and thus is a viable
adaptation technique. Currently, component implementation is driven by the selection of a particular
component framework, such as JavaBeans [13], Component Object Model (COM) [12], or CORBA [5]. A
component belonging to one of these frameworks must embed the appropriate mechanisms to belong to the
framework, so in a sense embedding need not be a controversial topic.

When considering the adaptation techniques themselves, in-place modification clearly fails; with small
differences, however, the other techniques are more related than one might realize at first. We have carried
out a small experiment, described in [9], in evaluating the use of each of these techniques (except
Superimposition) in solving an adaptation problem. We are currently designing more rigorous experiments
to understand how to better aid application builders when they need to adaptation existing components.

5. Conclusion
This evaluation survey provides an overview of existing component adaptation techniques and provides a
good starting point for discussing the nature of component adaptation mechanisms. This material belongs
in various sections of the proposed Strawman outline for the workshop. Under the Technology supporting
CBSE (Section 3), reusable components must be discussed within the framework of how application
builders will adapt them. Integration technologies should not be limited to Run Time support; rather it
should include such static mechanisms as discussed in this paper. Finally, from a philosophical
perspective, it is important to differentiate software reuse (which traditionally has been a means of reusing
functional code libraries or frameworks) from reusable components (which brings in the notion of adapting
behavior).

References

1 Edward V. Berard. Essays on Object-Oriented Software Engineering. Prentice-Hall, Englewood
Cliffs, New Jersey, 1993.

2 Jan Bosch. Superimposition: A component adaptation technique. Technical Report TR, Department
of Computer Science and Business Administration, University of Karlskrona/Ronneby, September
1997.

3 Alan W. Brown and Kurt C. Wallnau. The current state of CBSE. IEEE Software, 15(5):37-46,
September 1990.

4 David Garlan, Robert T. Monroe, and David Wile. ACME: An architectural description interchange
language. In 1997 CASCON Conference, pages 169-183, Toronto, Ontario, November 1997.

5 Object Management Group. CORBA standard. Internet site (http://www.omg.org).

6 George T. Heineman. Adaptation and Software Architecture. In 3rd International Workshop on
Software Architecture, pages 61-64, Orlando, FL, November 1998.

7 George T. Heineman. Composing software systems from adaptable software components. In
DARPA/OMG Workshop on Compositional Software Architectures, Monterey, CA, January 1998.
http://www.objs.com/workshops/ws9801/report.html .

8 George T. Heineman. A Model for Designing Adaptable Software Components. In 22nd Annual
International Computer Software and Applications Conference, pages 121-127, Vienna, Austria,
August 1998.

9 George T. Heineman and Helgo Ohlenbusch. An Evaluation of Component Adaptation Techniques.
Technical Report WPI-CS-TR-98-20, Department of Computer Science, Worcester Polytechnic
Institute, February 1999.

10 Ralph Keller and Urs Hölzle. Binary Component Adaptation. Technical Report TRCS97-20,
Department of Computer Science, University of California, Santa Barbara, December 1997.

11 Gregor Kiczales, John Lamping, Cristina Lopes, Chris Maeda, Anurag Mendherkar, and Gail
Murphy. Open Implementation Design Guidelines. In 19th International Conference on Software
Engineering, pages 481-490, May 1997.

12 Microsoft Corporation and Digital Equipment Corporation. The Component Object Model
Specification: Draft Version 0.9, October 24, 1995.
Internet publication (http://www.microsoft.com/oledev/olecom/title.htm).

13 Sun Microsystems, Inc. JavaBeans 1.0 API Specification.
Internet site (http://www.javasoft.com/beans), December 4, 1996.

14 P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software evolution. In
International Conference on Software Engineering, Kyoto, Japan, April 1998.

15 David L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE Transactions on
Software Engineering, 5(6):310-320, March 1979.

16 L. Sha, R. Rajkumar, and M. Gagliardi. Evolving dependable real-time systems. In IEEE Aerospace
Applications Conference, pages 335-346, New York, NY, 1996.

17 Urs Hölzle. Integrating Independently-Developed Components in Object-Oriented Languages. In O.
Nierstrasz, editor, ECOOP ’93 Conference Proceedings, LNCS 707, pages 36-56, Kaiserslautern,
Germany, July 1993. Springer-Verlag.

18 Ian Welch and Robert Stroud. Adaptation of connectors in software architectures. In Third
International Workshop on Component-Oriented Programming (WCOP’98), Brussels, Belgium, July
1998.

19 Daniel M. Yellin and Robert E. Strom. Protocol Specification and Component Adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292-333, March 1997.

