AN EXAMINATION OF THE CURRENT
STATE OF CBSE: A REPORT ON THE
ICSE WORKSHOP ON
COMPONENT-BASED SOFTWARE
ENGINEERING (CBSE)

HELD IN CONJUNCTION WITH THE
20T INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE)
KYOTO, JAPAN.

Alan W. Brown (alan_brown@stetling.com) Kurt C. Wallnau (kew(@sei.cmu.edu)

Sterling Software Software Engineering Institute

Applications Development Division Carnegie Mellon University

Plano, Texas, 75023 Pittsburgh PA, 15213
INTRODUCTION

On April 25-26 representatives of industry and academia met in Kyoto, Japan, to patticipate in
an international workshop on component-based software engineering (CBSE). This workshop was
held in conjunction with the 20t International Conference on Software Engineering (ICSE). The
purpose of the workshop was to help the software community develop a better understanding of
CBSE, and in particular to identify gaps that exist between industry needs and current academic
research in CBSE.

The wotkshop was organized as a series of panel discussions. Each panelist made a short (15
minute) presentation of their position, after which there was 30-40 minutes of open discussion. The
panel presentations were organized by the following broad categories:

* Engineering theory and methodology--what do we mean by CBSE and
what s its influence on the way we develop systems?

* Components and object technology--how does CBSE differ from object
technology, and how is object technology used to realize CBSE?

* Tools and technology--what are the key technologies, how can they be
effectively used, and how might they be extended or otherwise improved?

* Real-life, enterprise-level application of CBSE--why are large enterprises
interested in CBSE, what are they doing, and what are their experiences?

In addition to panel discussions, two invited keynote presentations set the tone for each day's
session. Dr. Mikio Aoyama's (NIIT, Japan) keynote outlined a large-scale vision for CBSE. Dir.
Wojtek Kozaczynski's (SSA, USA) keynote described in detail the notion of business component, and

offered a case study in the use of business components in the design of a very large-scale enterprise
information system.

The nominal focus of the workshop was on component management infrastructures--the build-
time and run-time infrastructures for component-based systems. However, as will be seen, the
wortkshop participants charted a more diverse and comprehensive course.

DIVERSITY OF PERSPECTIVES

CBSE 1s generating tremendous interest not just in the software community but in numerous
industry sectors. Recent technology advances, including the Web, Java Beans, ActiveX and others
spur this interest. But CBSE goes well beyond these zechnology enablers as attested by the diversity of
perspectives brought to the workshop by its participants. This diversity was also apparent in a
related ICSE panel discussion, "CBSE: Can It Change the Way of Software Development?" which
generated active debate from a large audience. The debate ranged over wide ranging topics, from the
theory of software reuse to the reality of commercial software markets, from available tools to future
programming language mechanisms, and from practical testing to rigorous (formal) specification.

In both ICSE panel and CBSE workshop this diversity at times seemed to threaten to blur the
conceptual outlines of CBSE beyond all recognition. Does this diversity imply that we are exploring
the same basic CBSE concepts from many different points of view? Or are we exploring
fundamentally different or unrelated concepts that we are capriciously labeling as CBSE? The results
of this workshop suggest that the former 1s the case: CBSE 1s a real and emerging engineering
practice, and we are making good progress in identifying both the core concepts of CBSE as well as
different perspectives on these concepts. In fact, we found that the diversity of perspective, far from
diffusing CBSE, often wotks like stereoscopic vision--it provides "depth of field" to our petception
of CBSE concepts.

We illustrate one example of this diversity of perspective. There was general consensus that
components act as replacement units in component-based systems. However, the concept of
replacement unit has different meanings depending upon which of two major perspectives are
adopted. The first perspective (CBSE with off-the-shelf components) views component as
commercial-off-the-shelf commodity. In this perspective, CBSE requires industrial standardization
on a small number of component frameworks. The second perspective (CBSE with abstract
components) views component as application-specific core business asset. This perspective places
much less emphasis on standard component infrastructures or component marketplaces, and instead
emphasizes component-based design approaches. Although this illustration exaggerates the
tendencies of each perspective (both of which will operate in any large system development effort), it
does reflect real differences that conditioned much of the workshop discussion.

The rest of this summary will focus on the results of the last session of the workshop--a session
devoted to synthesis of the major themes from the panel discussions. It was in this session that many
of the different perspectives on CBSE were brought into focus. An online version of the workshop
proceedings is in production!.

! Check www.sei.cmu.edu/cbs/icseworkshop.html for the availability of these proceedings and selected panel presentations.

SYNTHESIS OF WORKSHOP RESULTS

The closing session was organized as a facilitated, large-group brainstorming session. The
objective was to identify the major results that participants could take away from the panel
discussions. The discussion ranged from the conceptual--what is CBSE? to the skeptical--why will it
wortk now if it didn't before? and finally to the practical--what will it mean to otganizations if CBSE
does wotk? Each of these will be discussed in turn.

WHAT IS CBSE?

Predictably, some discussion time focused on definition of terms--notably, the term
"component." Just as predictably, these definitions only sketched the contours of this complex
concept. Fortunately, the wotkshop was able to make use of several established definitions, and to
their credit the participants used these definitions as a basis for exploring additional characteristics of
components rather than arguing for or against the validity of any particular definition.

The following (different) definitions of soffware component are representative of those that are
emerging in the software mdustry.

1) A component is a non-trivial, nearly independent, and replaceable part of a system that fulfills a
clear function in the context of a well-defined architecture. A component conforms to and provides
the physical realization of a set of interfaces’.

2) A run-time software component is a dynamically bindable package of one or more programs
managed as a unit and accessed through documented interfaces that can be discovered at run-time’.

3) A software component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is subject to
composition by third party.

4) A Business Component represents the software implementation of an “autonomons” business
concept or business process. 1t consists of all the software artifacts necessary to express, implement
and deploy the concept as a reusable element of a larger business system.

A close inspection of these definitions is tevealing in that they seem to desctibe approximately
the same concept, but there are sufficient differences to make them non-substitutable. For example,
definitions 1 and (especially) 4 are explicit about the large-grained nature of components; this #zght be
inferred from definition 2, but can 7o be inferred from definition 3. Definitions 1 and 3 are explicit
about the need to accommodate context dependencies, but on/y definition 3 requires explicit
description of context dependencies. Explicit context dependencies #ight be inferred from definition
4 (which uses a convenient if not desctiptive "catch all" phrase about what is needed to "express,
implement and deploy" components), but can 7oz be inferred from definition 2. Similar variation can
be observed concerning the notion of component autonomy--the ability to of components to be
deployed independently, or execute independently, and so forth.

2 As presented in Philippe Kruchten's (Rational) position statement.

3 This and the remaining definitions wete presented in Wojtek Kozaczynski's keynote. The first is from the Gartner Group,
the second from Szyperski's "Component Software," while the last is the one adopted by Dr. Kozaczynski's for his work.

Fach of these definitions has merit. Rather than debate these merits in detail, the workshop
participants decided that two additional characteristics of components need to be noted--the first
deals with the relationship between components and object technology, the second deals with the
relationship between components and software architecture.

Object technology is neither necessary nor sufficient for CBSE

It 1s curious that such a strong statement--as obvious as it may seem to some--should have
passed without more vigorous contention. Instead, this assertion was generally acknowledged to be a
natural consequence of the panel presentations and discussions--and this notwithstanding the fact
that most available technologies for component-based development clearly are object-oriented. For
example, Java Beans and Enterprise Java Beans are prime exemplars of component-based
technology. From the methodological arena UML, itself an outgrowth of OOA/OOD, actively
addresses component concepts. In this context it seems strange to assert the independence of CBSE
from OT. How can this apparent incongruity be justified?

To state the conclusion first, the workshop participants agreed that object technology (OT) was a
useful and convenient starting point for CBSE, but a) by itself, OT did not express the full range of
abstractions needed by CBSE, and b) it 1s possible to realize CBSE without employing OT. Thus,
OT 1s neither necessary (b) nor sufficient (a). Moreover, as discussed later, CBSE might induce
substantial changes in approach to system design, project management, and organizational style--

changes that go well beyond those implied by a large and growing base of imndustry experience with
OT.

To illustrate the insufficiency of OT for CBSE, consider the role of component as replacement unit
in a system. The earlier definitions of component addressed at least one characteristic that relates to
replaceability--explicit context specification. Concretely, explicit context specification might be
implemented via a "uses" clause on a specification?, i.e., a declaration of what system resources ate
required for the component to work. OT does not typically support this concept. This is #of to
suggest that OT should adopt "uses" clauses--there are strong arguments why it should not.
However, these same arguments lose some of their force when applied to design-level (as distinct
from programming-level) abstractions, and especially where a compositional style of development
from existing components is desired.

To illustrate the non-necessity of OT we (ironically) draw on the experiences of workshop
participants in attempting to use OT to implement CBSE. Put bluntly, some practitioners are
attempting to find ways to insulate their approaches to CBSE from OT. Why? Because the OT
technology market--in particular, disttibuted OT such as Java, CORBA, Active/X--is far too unstable
and contentious, and will, in the opinion of many, continue to be unstable and fragmented. The
tendency of workshop discussion was to treat distributed OT as infrastructure "plumbing" and to
treat components as larger-grained abstractions and implementations that can be applied to a variety
of different infrastructures. Whether a complete separation of components from infrastructure is
feasible led to the following discussion on the relationship of component and architecture.

4 This is actually a contentious issue even in CBSE: a "uses" clause would seem to imply that the interface describes an
implementation rather than an abstraction over many possible implementations. Once again we can see the perspectives of
component as off-the-shelf implementation vs. component as design abstraction at work.

Components are inseparable from architecture

If one of the motivations for CBSE is to improve system flexibility through a compositional style
of development, a natural question is what makes composition possible? It has to be more than our
ability to describe abstractions via abstract interfaces--if that were all that was needed there would be
no need for CBSE. Instead, it is apparent that the degree to which we are able to "plug in"
components--the operative phrase in compositional development--is directly related to the degree to
which components adhere to some set of pre-defined constraints or conventions. The most
prominent component technologies--(Enterprise) Java Beans, ActiveX, and CORBAS5 all impose
constraints on components. To illustrate with a simple example, the ability of a component
infrastructure to inquire into the interfaces of a component (see definition 2 for component, above)
requires the component to implement some service or obey some convention that is required by its
underlying component infrastructure.

With this in mind, it was suggested that components implement two kinds of interface: a
functional interface that reflects the role of a component in the system, and another exzra-functional
mterface that reflects the component model imposed by some underlying component framework.
These extra-functional interfaces express the architectural constraints that enable composeability and
other desirable properties of component-based systems. Therefore, our understanding of what makes
a component a component is inextricably linked to our understanding of the architectural constraints
imposed on components by a component framework-cum-object model.

After some discussion, however, the workshop participants decided that although it is valid to
assert that components and architecture go hand in hand, the "two interface" suggestion outlined
above places too much emphasis on the role of component framework in software architecture.
Indeed, as noted, some participants were looking for a clean separation between software
architecture and component framework. A more general conception avoids this problem but still
preserves the notion of component/architecture duality by recognizing three different views of
architecture:

* Run-time: This includes component frameworks and component models
that provide run-time services for component-based systems.

* Design-time: This includes the application-specific view of components,
such as functional interfaces and component dependencies.

* Compose-time: This includes all that is needed to assemble a system from
components, including generators and other build-time services (a
component framework may provide some of these services).

These additional characteristics of components that emerged from the workshop discussion
suggest that components are complex design-level entities (l.e., both abstractions and
implementations). The question is whether this complexity serves to solve enterprise-level problems.
This leads to the discussion on the motivators behind CBSE.

WHY CBSE NOW?

Opver the past decade there have been many attempts to improve software development practices
by improving design techniques, by developing more expressive notations for capturing a system’s

> Assuming the Object Management Group adopts a component model.

mtended functionality, and by encouraging reuse of pre-developed pieces of a system rather than
building from scratch. Each of these has had some notable success in improving the quality,
flexibility, and maintainability of application systems, with many organizations having developed
complex, mission-critical applications deployed on a wide range of platforms.

Despite this success, tremendous problems must be faced by any organization engaged in
developing, deploying, and maintaining large-scale software-intensive systems. Furthermore, the past
few years has seen a number of significant changes in the requirements, tactics, and expectations of
application developers. These provide the context within the question “why CBSE now?” was
examined, and various CBSE solutions discussed.

In examining the context and maturity of CBSE, two important aspects of the question “why
CBSE now?” quickly emerged. The first aspect is the maturing of a number of underlying
technologies from which to build components and assemble applications from sets of those
components. The second aspect is the change in business and organizational context within which
applications are developed, deployed, and maintained.

MATURING COMPONENT TECHNOLOGIES

A number of workshop participants voiced the opinion that CBSE is happening now. The
highlighted the fact that the past few years have seen changes in the way systems are developed.
Development environments such as Visual Basic, and languages such as C++ and Java dominate new
application development. These languages, and the tools supporting them, have brought with them
the ability to share and distribute pieces of applications through approaches such as Visual Basic
Controls (VBXs), ActiveX controls, class libraries, and Java Beans. As these technologies have
matured, so has understanding about how to develop pieces of applications following these
approaches. Notions of component-oriented development are no longer foreign to many of today’s
application developers.

Each of these component approaches relies on some undetlying services to provide the
communication and coordination necessary to make applications from components. The component
infrastructure acts as the “plumbing” that allows communication among components. In order for
components to communicate they must share an understanding of how to use the infrastructure.
This could be as simple as a set of naming standards for operations, a standard place to put
information about the components, and in particular a set of conventions about how to make use of
other components using the infrastructure.S In addition, this mfrastructure may provide functionality
in a number of areas to allow components using the infrastructure to do so effectively and efficiently.
This may include services to:

= find out what components are currently connected to the infrastructure;

= make reference to other components via some meaningful naming scheme;
= guarantee once-only delivery of messages between components;

= manage transactions consisting of multiple interactions among components;

m allow secure communication between components.

¢ Such a standard is sometimes referred to as a Component Model.

A number of component infrastructure technologies have been developed. There seem to be
three specific infrastructures on which some measure of standardization is beginning to occur, and
for which many components, tools, and methods ate now available — the Object Management
Group’s (OMGs) Common Object Request Broker Architecture (CORBA), Sun’s Java Beans and
Enterprise Java Beans, and Microsoft’s Component Object Model (COM) and Distributed COM
(DCOM). Each of these component infrastructure technologies was discussed at the workshop, with
participants relating examples of their use in various operational contexts.

Tools and environments supporting each of these technologies are widely available, and in use in
a large number of organizations. Many benefits of using these tools are being realized. However, as
highlighted by a number of workshop participants, it is also being found that many challenges must
be faced when using these tools for the development of larger applications, in the management of
multiple versions of components, and when integrating components developed by different people
using a variety of technologies.

EVOLVING BUSINESS AND ORGANIZATIONAL CONTEXT

Far from concentrating exclusively on component technology issues, a number of workshop
participants broadened the scope of the discussion to consider the business and organizational
context within which CBSE must operate. A number of important recent developments in this
regard were suggested.

First, the style and architecture of the applications being developed has significantly changed.
Over the past few years there has been a major shift from centralized mainframe-based applications
accessed via terminals over proprietary networks toward distributed, multi-tiered applications
remotely accessible from a variety of client machines over intranets and the internet. Building such
applications requires application development tools and techniques to evolve to support new
methods and approaches for application development. Where organizations used to be involved in a
small number of large projects, they now are typically involved in a larger number of smaller projects
whose results must be shared.

Second, organizations have made significant financial and intellectual investment in the
applications they have built over the past two decades. The resources required for developing new
applications from scratch are typically not available, with the result that organizations must look for
ways in which they can leverage and reuse their existing investment across a range of their
applications. It has become of strategic importance to be able to reuse existing knowledge to enable
new applications to be assembled quickly and reliably. To achieve this developers require greater
support and guidance for decomposing applications into meaningful pieces, and for assembling new
applications from a mixture of new and existing pieces.

Third, organizations began to realize the strategic impact on their business practices held by
software-intensive systems supporting their organization. Significant costs were experienced by a
number of organizations that found themselves locked into proprietary software solutions. Typically
this arose from two sources. On the one hand, some organizations had attempted to develop large
parts of their software infrastructure (both systems software and application software) themselves.
Often they found themselves responsible for a growing, and very expensive, software maintenance
backlog. Frequently they found themselves at a disadvantage against more agile organizations, which
could quickly respond to customer and market changes by updating or replacing their computer
infrastructure. On the other hand, some organizations found that they had relied too much on a
single product from single vendor for their computing infrastructure. The resultant “vendor lock-in”
made it difficult to take advantage of a free market of computing suppliers, left important decisions
about computing infrastructure in the hands of third parties, and often significantly reduced the ease

with which information could be shared among partner organizations. A particular example of this
has been the move toward complete, packaged applications that are frequently found to be without
the flexibility required to be readily customized for specific organizational needs. Organizations
began to look for an approprate balance between writing everything from scratch each time, and
being able to evolve existing systems at a sufficient rate to meet changing business needs.

Finally, and perhaps most importantly, a revolution has occurred in the business environment in
which organizations operate. A key to the success of many organizations is to maintain some
measure of stability and predictability in the markets in which they operate, in the technology
employed to support its core businesses, and in the structure of the organization itself.
Unfortunately, the past few years has seen an inexorable rise in rate of change faced by organizations
in all of these areas. Strategic advantage can be gained by those organizations that can deal with these
changes most effectively. The ability to manage complexity and rapidly adapt to change has become
an important differentiator among competing organizations.

The solution to these problems seemed to lie in an approach to software development that
addresses each of these requirements. The workshop highlighted the goals of CBSE as the need to:

= embrace the opportunities offered by new technologies in the delivery and
deployment of software systems;

= encourage reuse of core functionality across applications;

m enable flexible upgrade and replacement of pieces of a system whether developed
m-house, by third parties, or purchased off-the-shelf;

= encapsulate the best practices of organizations in a way that allows them to be
replaced in the face of a vartety of different change scenarios.

LARGE SCALE IMPLICATIONS OF CBSE ON ORGANIZATIONS

Workshop participants experienced with CBSE development projects were quick to point out
that CBSE is much more than simply using object request brokers, setting up a library of useful code,
or acquiring Visual Basic controls over the internet. While these may all be tactical approaches to
realize CBSE, there is more strategic thinking and planning that must take place for an organization
to successfully apply CBSE as key approach to software development. In particular, there are very
broad implications of CBSE as a new approach to building, acquiring, assembling, and evolving
systems. As a result, for CBSE to be successfully adopted within an organization many concerns
must be addressed.

Two classes of concerns can usefully be distinguished, based on whether components are used as
a design philosophy independent from any concern for reusing existing components, or whether
components are off-the-shelf building blocks used for the design and implementation of a
component-based system. (This distinction was illustrated earlier as a major difference in perspective
held by workshop participants). For discussion purposes we will denote these classes as CBSE with
abstract components and CBSE with off-the-shelf components, respectively. As noted earlier this
distinction is useful despite the fact that these classes of issues rarely exist in 1solation of each other.

CBSE with abstract components.

CBSE with abstract components involves radically rethinking the relationship between design,
requirements, and components. Fundamentally, it requires new methods for software development
to be developed and applied, new processes, and the availability of powerful tools to automate
generation and management of components and interfaces. These CBSE-oriented methods and tools
are currently under development and provide an interface-based design focus to development
concentrating on the basic component architecture of a solution. As experienced by workshop
participants, such an approach provides stability of a system design at the interface level,
concentrates attention on collaborations among interfaces as the basis for understanding a system
architecture, and enables reuse and replacement of implementations conforming to the interface
specifications. A number of CBSE methods are beginning to emerge [1, 2, 3] and are being tracked
or applied in current projects. However, workshop participants were eager to point out that a great
deal of further experience with these approaches is required.

One particular consequence of this revolution in design approaches was pointed out by a
number of workshop participants: a dramatic change in the primary roles of software engineers, and
the skills they require to be effective. A number of organizations moving toward a CBSE approach
have found that the must re-think the organization of their teams to concentrate on component
provisioning within a well-defined component architecture. Finding people who can operate in this
environment 1s proving to be a major challenge. The lack of the approprate skills within an
organization could severely hamper the adoption of CBSE.

An important issue raised by Dr. Kozaczynski was that the major day-to-day challenge
otrganizations face in moving to a CBSE approach will be in the management of component-based
applications as they are deployed, and maintained, and continue to evolve. It is expected, for
example, that multiple components will be available providing similar functionality, many versions of
the same component will emerge, multiple configurations of sets of components will be in use, and
so on. Traditional configuration management and version control techniques provide an important
starting point to manage some of the issues that arise. However, as the emphasis moves from
monolithic development and deployment to component-oriented approaches, it has often been
found that new management methods and tools are essential. In particular, high composeability in a
product line setting amounts to mass customization and this introduces tremendous configuration
management challenges and support challenges. There are many opportunities for new tools and
techniques in this area.

CBSE with off-the-shelf components.

CBSE with off-the-shelf components moves organizations from the task of application
development to one of application assembly. The primary approach used to construct an application
1s now the use of pre-developed pieces. In many cases these pieces have been developed at different
times, by different groups of people, and with many different styles of use in mind. There are many
implications of making such a change, which we illustrate by considering one particular scenario
highlighted in detail at the workshop: black box assembly of commercial off-the-shelf (COTYS)

comp onents.

During the workshop some details were discussed regarding the experiences of one U.S.
Government command and control application developed using a large number of commercial off-
the-shelf packages. In assembling COTS components the organization was placed in a situation in
which they had limited access to the internal design of the component, pre-defined options for

customizing the component’s behavior, no ability to influence the release cycle of new versions of
the component, and total reliance on the long-term viability, integrity, and ability of the packages’
maintainers. As a result, many aspects of the design, assembly, testing, deployment, and maintenance
of a system wete effected. As well documented in [4], in such cases the development effort becomes
one of gradual discovery about the components, their capabilities, their internal assumptions, and the
incompatibilities that arise when they are used 1 concert. In fact, as experienced in this example, the
architecture of a COTS-based system often degenerates into a series of contingency and risk
mitigation strategies based on this discovered information. The workshop concluded that as the
emphasis on out-sourcing of systems and increased use of COTS components continues to grow,
many improvements are needed in the ways in which such components are documented, assembled,
adapted, and customized.

SUMMARY

The adoption of software technology as key to business enterprises in all market sectors is
generating tremendous demand for more flexible enterprise systems. This demand coincides with a
maturing software technology infrastructure for building distributed enterprise systems. CBSE is a
new style of software system development that is emerging from this growing demand and maturing
technology. While CBSE 1is still evolving, and while there 1s a diversity of perspectives about what
CBSE i1s all about, there is little doubt that something is happening, we are calling that something
CBSE, and that the outlines of CBSE are becoming clearer all the time.

The ICSE Workshop on CBSE provided an opportunity for researchers and practitioners to
share their differing perspectives on CBSE. A synthesis of these different perspectives helped the
wotrkshop participants to understand better the nature of components, what is motivating the
emergence of CBSE, and what potential implications of CBSE are on organizations. The ICSE
CBSE Wortkshop 1s not the first or only forum for exploring CBSE concepts. However, as a premier
conference on software engineering, ICSE provides a superb context for this type of workshop.

ACKNOWLEDGEMENTS

Thanks are due to the ICSE wotkshop organizers and Dr. Mikio Aoyama in particulat, for the
excellent workshop arrangements. Thanks also to Wojtek Kozaczynski (SSA) for his detailed
recording of the summary session, and to Wojtek Kozaczynski, Philippe Kruchten (Rational), Chris
Dellarocas (MIT), David Catney (SEI) and Mikio Aoyama for their comments on this summary.

REFERENCES

[1] D. D’Souza and A.C. Wills, “Objects, Components, and Frameworks with UML: The Catalysis
Approach”, Addison-Wesley, 1998.

[2] P. Coad, “Java Design: Building Better Applications and Applets”, Prentice Hall, 1997.

[3] P. Allen and S. Frost, “Component Based Development for Enterprise Systems: Applying the
Select Approach, Cambridge University Press," 1997.

[4] D. Garlan et al., “Architectural Mismatch: Why it 1s Hard to Build Systems Out of Existing
Parts”, IEEE Software, November 1996

10

11

	Introduction
	Diversity of Perspectives
	Synthesis of Workshop Results
	What is CBSE?
	Object technology is neither necessary nor sufficient for CBSE
	Components are inseparable from architecture

	Why CBSE Now?
	Maturing Component Technologies
	Evolving Business and Organizational Context
	Large-Scale Implications of CBSE on Organizations
	CBSE with abstract components
	CBSE with off-the-shelf components

	Summary
	Acknowledgements
	References

