
Inter-component communication as a vehicle towards end-user modeling

Manolis Koutlis (koutlis@cti.gr)
Petros Kourouniotis (P.Kourouniotis@asyk.ase.gr)

Kriton Kyrimis (kyrimis@cti.gr)
Nikolina Renieri (renieri@cti.gr)

Computer Technology Institute
Patras, Greece

Introduction
In this work we describe a mechanism for inter-component communication. This mechanism forms the basis of a
broader environment designed to support the construction of educational applications. These applications are
constructed by end-users and not by “programmers”, by assembling high-level, domain-specific software
components into functional wholes. The above mechanism arose from requirements put forward by the nature of
the targeted application domain:
• It must be possible for teachers to prepare the required course material “on their own” (i.e., by altering

predefined templates, or by constructing new templates from scratch), customizing it for the subjects on
which they want to focus, the intended audience, their individual teaching style, etc. Thus, the software
should be (re)constructable by the teacher rather than being provided as “hard-coded” pre-defined scenaria,
created by a programmer.

• To do so, teachers would need to think and build using high-level entities, modeling concepts, processes and
phenomena close to their domain of concern, instead of having to deal with the low level data-types and
primitive operations that are typically provided by programming or scripting languages [1], [2], [3]. Using a
“kit” of such building blocks, it should be possible for teachers to construct many different teaching scenaria
(just like a small number of Lego brick types suffice to build arbitrary constructions).

• In addition, teachers would like to exchange educational materials and use constructions made by other
colleagues or found in repositories like the web, thus making shareability and reusability of resources an
additional requirement.

• Finally, the software should be usable by both students and teachers, and its use should not depend on the
users’ familiarity with computers. Thus, the user interface should be intuitive, based on familiar paradigms
from the real world.

With these pursuits in mind we took the path of designing educational components, able to inter-operate in user-
defined “editable applications”1. To achieve this inter-operation we designed and implemented the inter-
component communication mechanism described below.

The communication mechanism
Components are connected together via the plug metaphor. Each component has a number of plugs, which can
be likened to the sockets of a Hi-Fi component. To connect two components, they must each have an appropriate
plug, corresponding to a plug on the other component. This is similar to a tape-deck’s “output” socket, which is
connected to the “input” socket of an amplifier. To expand on this metaphor, connecting a tape deck’s “input”
socket to the “input” socket of an amplifier does not work. Similarly, the interconnection mechanism does not
allow the connection of unrelated plugs, which would have no meaning.

User-level description

Each component has a set of plugs, which can be displayed by clicking on the component with the right mouse
button. Each plug has a name, suggesting the plug’s function, and an icon. The icon is in the form of a jigsaw
puzzle piece, with a certain shape and color. To connect two components, the user must select one of the plugs
from the first component, and a matching plug from the second component. Two plugs are considered to match
if their icons have the same color, and their shapes fit together (see Figure 1).
For example, consider a mathematics lesson on vectors. The teacher can set up an activity (scenario) where two
building blocks (components) are used: an aeroplane and a vector editor. The aim of the activity is to study the

1 In essence and with reference to OMT [5] terminology, we view this latter process as high-level “modeling” task in which end-users are
designing the object modeling part of a targeted application, with the exception that they are constrained to do so with prefabricated entities
(components), and define the interrelationships among them, guided (constrained) by their (pre-decided) connectivity capabilities. By doing
so, they have finished developing the application, as the next two phases of the process (again in OMT terminology), dynamic and
functional modeling, are already encapsulated in the components’ behavior and interaction patterns and the supporting communication
mechanism.

effect on the aeroplane’s motion. As shown in Figure 2, the wind velocity can be specified by the user via a
vector component. By connecting the two components, user-given values for wind velocity are passed to the
aeroplane component, making it possible for the user to study the effect of wind velocity on the aeroplane’s
motion. The teacher has the flexibility to choose to display this motion on a map component, to display the
aeroplane's ground velocity on another vector component, or to do both. By considering the aeroplane’s air
velocity either fixed or controllable by the student through yet another vector component, the teacher is given
even more options in setting up activities.

Figure 1: Two matching plugs

Notice in Figure 2 that the vector component has a generic plug, called “vector”, and that the aeroplane has a
matching plug called “wind velocity”. The vector can be connected to any component that can accept vector data
as input (e.g., a planar graph drawing component). Also notice, that the matching plugs have different names.

Figure 2: Connecting two components

Implementation-level description

Internally, plugs are implemented in two different ways: using shared objects and connection-specific protocols
[4].
Shared objects are data that can notify all components participating in a connection whenever their value (e.g.,
“wind velocity” in Figure 2) changes. Thus, shared objects behave as if they were part of all components
participating in a connection instead of only the component that created the object. To communicate via a shared
object, a component sets the shared object’s value. The shared object notifies all other connected components
that the shared object’s value has changed. They, in turn, read the shared object’s value and perform the
appropriate action. In other words, shared objects provide a data flow mechanism.
The plug of the component that creates the shared object is an output plug, while the plugs of the other
components that connect to it are input plugs. This is reflected in the shape of the plug’s icon (see Figure 1).
Protocols are an alternative way inter-component communication is implemented. A protocol is the specification
of the set of methods that a component must implement in order to communicate with another component. E.g.,
consider a joystick component. Another component that can be connected to it (e.g., a spaceship), must
implement a “fire” method, which is invoked by the joystick component whenever its fire button is hit.
These two mechanisms would appear to be redundant: shared objects could be implemented via protocols that
specify the methods that read and write the shared object’s data, and protocols can be implemented via shared
objects by having a shared object called “command”, where commands are passed as plain text (e.g., “fire”).
However, both methods were implemented, because, depending on the nature of the plug and the programmer’s
perception, it is more appropriate to view some plugs conceptually as shared objects, and other plugs as
implementing a protocol.
The plug mechanism can be described using the OMT [5] diagram in Figure 3.

Implementation and applications
Our work in educational software components began in 1993 and a first version of the mechanism was
implemented in OpenDOC. Given that this platform stopped being supported in 1997, our additional
requirements for web support, and the current turn of the programming world towards the Java platform, the
current version of the mechanism was re-implemented in Java.

The mechanism is being used for the interconnection of educational software components which are being
developed in the course of various projects2.
The mechanism is not limited only to educational components. It is a general-purpose inter-component
communication mechanism, and is available in the form of an application programming interface (API) for use
by third parties.

Plug

Icon

hasDependants

hasProviders

DataFlowPlug
SharedObject

setValue ()
getValue ()
notifyDependentComponets()

Color
applies DF to a
shared object

ProtocolPlug

SpaceShipToJoystickPlug

fire ()
turn(direction)

Icon =

…

DFSingleOutPlug

Icon =

Single Output. Allows a connection to
be established with exactly one other
Plug for data exports

DFMultipleOutPlug

Icon =

Multiple Output. Allows multiple
connections to be established with more
than one other Plugs for data exports

DFSingleInSingleOutPlug

Icon =

Single Input/Output. Allows a
connection to be established with one
other Plug for data exports and/or one
other Plug for data imports

DFMultipleInSingleOutPlug

Icon =

Multiple Input, Single Output Allows a
connection to be established with one
other Plug for data exports and/or
multiple connections with many other
Plugs for data imports

DFSingleInPlug

Icon =

Single Input. Allows a connection to be
established with one other Plug for data
imports

DFMultipleInPlug

Icon =

Multiple Input. Allows multiple
connections to be established with more
than one other Plugs for data imports

DFMultipleInMultipleOutPlug

Icon =

Multiple Input/Output. Allows multiple
connections to be established with more
than one other Plugs for either data
exports and/or data imports

DFSingleInMultipleOutPlug

Icon =

Single Input, Multiple Output. Allows
a connection to be established with one
other Plug for data imports and/or
multiple connections with many other
Plugs for data exports

…

VectorPlug
WindVelocityPlug …

Vector

X_param: REAL
Y_param: REAL

…

…

Figure 3: OMT description of the plug mechanism

References
[1] Roschelle, J. & Kaput, J. (1996). Educational software architecture and systemic impact: The promise of component

software. Journal of Educational Computing Research, 14(3), 217–228.
[2] diSessa, A. (1997). Open toolsets: New ends and new means in learning mathematics and science with computers. (In

press).
[3] Kynigos, C., Koutlis, M., Hadzilacos, T. (1997). “Mathematics with component-oriented exploratory software”. To

appear in: International Journal of Computers for Mathematical Learning.
[4] Pintado, X. (1995). “Gluons and the cooperation between software components”, in Object-Oriented Software

Composition, Eds Oscar Niersrtasz & Dennis Tsichritzis, Prentice Hall 1995, ISBM 0-13-220674-9, pp 322–349.
[5] Rumbaugh J. etal “Object Oriented Modeling and Design”, Prentice Hall Int. Editions 1991, ISBN 0-13-630054-5.

2 The projects where this mechanism is being used are:
• Project “YDEES” (“The computer as a tool for exploration, expression of ideas and communication for everyone in the school”, 1995–

98, http://www.cti.gr/RD3/EduTech/ydees.html), funded by the European Community Support Framework II (Greek Ministry of
Industry Energy and Technology, General secretariat for R&D, Measure 1.3, Project 726).

• Project IMEL (“Intercultural Microworld courseware for Exploratory Learning”, 1996–98, http://www.cti.gr/RD3/EduTech/IMEL.htm)
funded by the European Union’s SOCRATES programme, ref # 25136-CP-1-96-1-GR-ODL).

• Project “ODYSSEAS” (“Integrated Network of School and Educational Regeneration in Achaia, Thrace and the Aegean”, 1996–99,
http://odysseia.cti.gr/odysseas/english/ukabout.html) funded by the European Community Support Framework II (Greek Ministry of
National Education and Religious Affairs, Measures 1.1 and 1.4).

	Introduction
	The communication mechanism
	Implementation and applications
	References
	Figure 1: Two matching plugs
	Figure 2: Connecting two components
	Figure 3: OMT description of the plug mechanism

