
Verifying components under development at the
design stage: A Tool to support the composition

of component design models

Siobhan Clarke, John Murphy

School of Computer Applications,
Dublin City University,

Dublin 9.

Contact: sclarke@compapp.dcu.ie

Abstract: Two of the main objectives associated with the development of a business
component destined for a component-based environment are that the component
provides the business service precisely as stated, and that it provides an interface with
which other components can work. Testing these objectives often occurs at the system
test phase. We are developing a tool that supports the composition of UML design
models, which will allow the verification of the design of a component occur at an
earlier stage in the development cycle.

1. Introduction

In [CM97] we introduced research into a tool designed to support the development of
large-scale systems by allowing the composition of component parts. This can be
done at any stage during the development cycle, as components may be design models
as well as code components. Development of a component to support some specific
business requirement that is required to work within a component-based environment
is similar in some ways to developing one small part of a large-scale system which
will be finally composed into the final application. The component in a component-
based development must provide precisely the stated functionality1, and must provide
usable interfaces. Obviously, a well-run project will test the component prior to
release. It is well documented that the earlier problems are found in the development
cycle, the cheaper it is to fix them. Therefore, the composition of the design models of
components will verify the compatibility of the components and isolate conflicts and
gaps in the business functionality provided. The gaps might be filled by other
components or, if there do not appear to be other components supporting the missing
functionality, this might result in a requirement for the development of a new
component.

This implies that the component designs are available for composition, which may not
always be the case. However, there is much discussion on the need for precise
descriptions of components. UML design models provide accessible, relatively
precise descriptions of the specification of a component, and therefore might be a
candidate for a standard way in which the descriptions of components might be
published. If this were the case, then composition of the design models for
verification purposes would be possible. Within a single vendor environment,

1 It is, of course, useful for the functionality to be required in the first place.

however, verification of the components under development using this mechanism is
possible, since the design models are probably available.

2. Related Work

There is considerable research on-going into object-oriented software composition,
with many different techniques around. One mechanism to support the composition of
object-oriented programs, called subject-oriented programming, is based on the
packaging of object oriented systems into “subjects”2, with a compositor program
used to compose subjects into larger subjects, and eventually entire systems
[OKKHK96]. When composing subjects, composition designers consider issues of
both correspondence and combination. Correspondences between different elements
of the subjects may be based on having the same name, or some other rule.
Combination can be performed in a variety of different ways. For example, one
subject’s elements may replace those of another. Alternatively, use of join
combination aggregates, rather than replaces, functionality.

We believe that composition at the design level is also a very useful mechanism. The
notion of model templates is discussed in [DW98] where a template is a model of a
design pattern – i.e., a generic piece of model. Models and designs may be built by
application of the templates. Applying a template to the model effectively merges the
specification of the template with the model, ensuring that the model is refined with
the generic template. Specification of the model template is similar to the
specification of the design model. On application of the template to the model, the
names of the template are replaced by the names in the model. Our tool could easily
support this approach.

3. Tool Functionality

The design of the compositor tool has drawn from the flexibility of the composition
rules concept from subject-oriented programming and the notion of templates from
Catalysis. The objective is to automate the composition process as far as possible,
which requires support for flexible specification of rules guiding the compositor
component on what is required when a conflict arises. The following main areas
support the composition of design models, and are described in more detail in
[CM98]:

3.1. Composition of Design Models

The composition of design models is performed based on a set of composition rules,
which include the rules associated with element correspondence and rules defining the
combination technique. During the composition, there is considerable potential for
conflict. One example of a conflict might be if two design elements, one from each of
two components being composed, have the same name but have different properties
defined. In the absence of a generic rule to cover a particular conflict case, the tool
notifies the designer to resolve the conflict by specifying the properties for the
conflicting elements in the composed model. There are two kinds of conflicts: one

2 A subject is defined as an object-oriented program or program fragment that models its domain in its
own, subjective way.

where the “correctness” of the composed model is compromised, and one where the
business information of the design elements contradict. Both cases may have the
potential to be covered by rules which may be selectively added to the high-level
composition rule on which the composition process is based.

3.2. Specification of Generic Rules to Automate Conflict Resolution

Design elements in a UML design model are constrained by the rules of the UML
meta-model. As an instance of a meta-class, a design element has properties and rules
associated with it. During the design of a component, the tool ensures the
“correctness” of the model at all times. In the same way, a tool composing models
into a new model must ensure that the composed model also conforms to the
“correctness” rules of UML. In general, where we have a design element property
with a UML rule attached [UML97], these must be considered as a pair with a two-
way impact. The design element’s properties in a particular stage of the design will
impact, based on a UML rule, the creation or change of the other properties of the
same design element and/or the creation or change of other design elements.
Conversely, an attempt to change the properties of a design element may be restricted,
based on a UML rule, by the values of other properties in the same design element
and/or the values of the properties of other design elements. When composing two
models designed separately, conflicts associated with the (property,rule) pair may
arise. The composition tool allows the specification of generic rules that allow the
compositor component of the tool to automatically handle conflicts associated with
the (property,rule) pair when they arise.

In addition, during the composition of design models, designers may also be required
to resolve conflicts between design elements that result from differences between
different designers’ knowledge of the problem domain. The designer attempting the
composition of design models may intercede in these conflicts by defining the
properties for the design elements in the composed model. We consider that there is
potential to build a specific rule for each decision made by maintaining the design
element values selected for the composed model. In every future encounter with that
design element, even if not in this composition effort, application of the rule would
result in the previously stored properties being applied.

References

[CM97] Siobhan Clarke, John Murphy. “Developing a Tool to support the Composition of
the Components in a Large-Scale Development” Workshop on Object-oriented
Behavioural Semantics, OOPSLA (1997)

[CM98] Siobhan Clarke, John Murphy. “Composition of UML Design Models: A tool to
support the resolution of conflicts” submitted to OOIS (1998)

[DW98] Desmond D’Souza, Alan Wills. “Objects, Components and Frameworks with UML:
The Catalysis Approach” Addison-Wesley (1998).

[OKKHK96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, Vincent
Kruskal. “Specifying Subject-Oriented Composition” Theory and Practice of Object
Systems, Volume 2, Number 3, (1996).

[UML97] UML Consortium. “Unified Modeling Language Semantics Version 1.1.” available
from http://www.rational.com

