
Toward Exception Handling Infrastructures for Component-Based Software

Chrysanthos Dellarocas
Adaptive Systems and Evolutionary Software Group

Center for Coordination Science
Massachusetts Institute of Technology

MIT, Room E53-315
Cambridge, MA 02139, USA

Email: dell@mit.edu

 

Abstract:

This paper argues that component-based software
development introduces additional sources of risk
because (i) independently developed components
cannot be fully trusted to conform to their published
specifications and (ii) very often, software failures are
caused by systemic patterns of interaction that cannot
be localized to any individual component. It
articulates the need for a separate exception handling
infrastructure to address these issues. The proposed
approach creates a clean separation between the
normative and exception handling functions in
component-based software systems. Components focus
on executing their own “normal” problem solving
behavior, while an exception handling service focuses
on detecting and resolving exceptions in the system as
a whole. The exception handling service works by
applying a knowledge base of generic and highly
reusable exception handling expertise to the
particular run-time contexts it faces. The “cost of
admission” for this approach is only that individual
components implement at least a minimum set of
interfaces that require only self-awareness and self-
adaptation. This technology can be realized as a
standardized middleware service that can add
exception handling to any component-based system
with appropriate interfaces.

 1. The Challenge

 Much of the appeal of component-based software
development derives from the potential of creating
complex systems without having to implement the
whole system from scratch - the desired services are
provided by independently developed, off-the-shelf
components.

 Components are selected on the basis of their
“credentials”, that is, published specifications of their
capabilities and constraints. Such specifications are, by
necessity, incomplete and imprecise descriptions of a
component’s behavior (Shaw, 1997). A critical
challenge to achieving the vision of component-based
software development is ensuring that independently
developed components correctly provide the services
advertised in their published specifications and obey
the resource and performance constraints implied by
them. Furthermore, it is important to ensure that
component ensembles can operate effectively when, as
is increasingly typical for many business domains, the
operating environment is complex, dynamic and error-
prone.

 Until now, the standard approach to this problem has
been to “compile in” complicated and carefully
coordinated exception handling behaviors into all
individual components. This is, however, a
fundamentally problematic approach for component-
based software, because component users do not have
access to the internals of a component. Furthermore,
the causes, manifestations and resolutions for most
exceptions are inherently systemic and context-
sensitive rather than localizable to any particular
component. A circular wait deadlock, for example,
where several components are all stalled waiting from
inputs from each other, is caused not by any individual
component but rather by the interaction of several
components in a given context. Plausible but incorrect
data from one component may only have its impact far
downstream in the application. The resolution to a
circular wait deadlock, to give another example, is to
redesign the pattern of component interconnections
(by replacing one of the components by another with
different input requirements) rather than to change the
behavior of any individual component.



 The “component-localized” approach has several
serious limitations. Component developers must
anticipate all the contexts in which a component may
be used. No systematic methodology is available to
help developers identify all the possible exception
types and appropriate resolution strategies. Making
changes in a system’s exception handling behavior is
difficult because it potentially requires coordinated
changes in several constituent components. The
resulting components are much harder to maintain,
understand and reuse, because the “normative”
behavior of the component has been obscured by a
large body of code devoted to handling exceptional
conditions. Finally, it is unrealistic to expect that all
components will have sophisticated exception
handling capabilities built in.

 As a response to these challenges, this paper proposes
the need for a specialized exception handling
infrastructure for component-based software systems.
It outlines the principles of such an infrastructure and
discusses the implications of such a service for other
aspects of component management infrastructure, as
well as for component developers.

 The Adaptive Systems and Evolutionary Software
(ASES) group at MIT is currently engaged in
developing an exception handling infrastructure, as
described in this paper, in the context of agent-based
and workflow software systems. For more information
about the activities of our group, the interested reader
is referred to our web site at http://ccs.mit.edu/ases

 2. An Exception Handling Service for
Component-based Software

 The challenges outlined in the previous section can be
addressed directly by establishing a “division of labor”
between normal system operation and exception
handling. In this approach, individual components
need only implement their normative behavior plus a
minimal set of interfaces through which a component
can report on its current behavior and modify its
operation to at least some extent. A separate exception
handling service, itself potentially implemented as a
set of components, uses these interfaces plus a
knowledge base of generic exception management
expertise to detect when things go wrong in the system
and take the appropriate corrective actions. This
service can be viewed as a kind of “coordination
doctor” that one can plug into an existing component-
based system; it contains a large knowledge base
describing the different ways software systems can fail,
actively looks system-wide for symptoms of such
“illnesses”, and prescribes specific interventions

instantiated from a body of general exception
resolution strategies also stored in its knowledge base.

 The key idea underlying this approach is the simple
but powerful notion that generic and reusable
exception handling expertise can be usefully separated
from the knowledge used by problem-solving
components to do their “normal” work. There is
substantial evidence for the validity of this notion.
Early work on expert systems development revealed
that it is useful to separate regular problem solving
from generic heuristics for controlling this activity
(Gruber, 1989; Barnett, 1984). Analogous insights
were also confirmed in the domains of collaborative
design conflict management (Klein, 1991) and in
preliminary work on process exception management
(Klein, 1997). Examples of generic exception
management expertise are easy to find, and range from
very general heuristics (e.g. “backtrack to a different
plan for achieving a goal if a previous plan has
failed”) to more specific ones (e.g. “if a highly serial
process is operating too slowly to meet an impending
deadline, increase concurrency by pipelined or parallel
operations”).

3. Architectural Overview

In the paragraphs below we will go into more detail in
how the components of this approach, i.e. exception
detection, diagnosis, and resolution generation are
realized.

Exception Detection: The first step in detecting
exceptions is, of course, to have some model of the
“correct” behavior both for the entire system, as well
as for each individual component. These models will
be prepared by the target system developers (for the
entire system) and should be part of components’
published specification (for each individual
component). During design time, the models are
mapped to a list of the failure modes that are known to
occur for each kind of normative behavior. As a result
of this analysis, the system is instrumented with
additional sentinel components. The purpose of
sentinel components is to detect particular failure
modes by looking for the appropriate patterns in the
behavior of base components. Base components should
provide an introspection interface, through which
sentinels will be able to query components and find out
about their current behavior.

Failure mode identification can be greatly facilitated
by the existence of a taxonomy of generic component
types wherein each generic type has associated with it
the different ways that the services provided by



components of that type can fail. For each component,
we merely identify the type of the component in the
taxonomy, and from that we can derive the failure
modes that apply. A similar taxonomy is also required
for component interconnection patterns. For example,
it is typical for components to require as input the
output of another component. Previous coordination
science research has determined that such “flow”
dependencies involve making sure the right thing gets
to the right place at the right time shown (Malone,
1994). This immediately implies a set of possible
failure modes including an input being late (“wrong
time”), of the wrong type (“wrong thing”) and so on.
Similar analyses can be done for other kinds of
transfer processes (e.g. one-to-many “sharing”
dependencies) as well as for generic problem solving
processes such as diagnosis, synthesis, market-based
coordination and so on.

Exception Diagnosis: During run-time, sentinel
components monitor system operation and generate
appropriate events when exception manifestations are

detected. A key challenge here is the fact that the
symptoms revealed by sentinels can suggest a variety
of possible underlying causes. A diagnostic engine is
triggered to determine the underlying cause of the
detected symptoms.

A heuristic classification approach (Clancey, 1984) is
well-suited to exception diagnosis. In this approach,
potential diagnoses (i.e. underlying exception causes)
are arranged into a taxonomy ranging from the very
abstract at the top to the very specific at the bottom.
The diagnosis mechanism works in a top-down way by

iteratively increasing the specificity of a diagnosis
based on the symptoms as well as information about
the process model being enacted. This is essentially a
"shallow model" approach (Chandrasekaran, 1983)
because it is based on compiled empirical and heuristic
expertise rather than first principles. This approach is
appropriate for domains, such as medical diagnosis,
where complete and consistent first-principle-based
behavioral models do not exist.

Exception Resolution: Once one or more candidate
diagnoses for an exception have been identified, the
next step is to generate, using a knowledge base of
generic exception resolution strategies, specific plans
for resolving the diagnosed problem. A diagnosis class
will often have several potential resolution strategies
available. Since they may not all be applicable for a
particular exception, a decision tree procedure
identical to that used to select diagnoses is used to find
the generic strategies for a given diagnosis. Once a
resolution strategy has been selected, it is enacted.
Enactment of a resolution strategy might involve

undoing/redoing previously completed activities or
modifying the structure or behavior of the system.
Components should provide a adaptation interface
through which the exception handling service can
inquire about a specific component’s adaptation
capabilities and can instruct the component to modify
itself (e.g. to undo or redo an operation, to change its
resource requirements, etc.) during exception
resolution.

User Interface: In highly complex systems, it is
unrealistic to expect that automated processes can

Failure mode
identification and
instrumentation

service

Original software
system

Instrumented
software system
(original system

+ sentinels)

Resolution plan
selection service

Exception
diagnostic

service

Resolution plan
enactment

service

exception
symptoms

exception
type

exception
resolution

plan

adaptation/
modification

requests

Design Time Run Time

Failure mode
knowledge

base
Exception
handling

knowledge
base

Figure 1: Summary of proposed exception management approach.



completely detect, diagnose and resolve all possible
exceptions. User input might be required in order to
finalize the diagnosis of an exceptional condition or
the selection of a resolution plan. A successful
exception handling infrastructure can help human
users better understand and more creatively resolve
exceptions, even if they do not use the particular
resolutions proposed by the system.

The overall approach is summarized in Figure 1.

4. Implications for Infrastructure and
Component Developers

The idea of a separate exception handling
infrastructure for component-based software systems
has a number of implications, both for other aspects of
component management infrastructure, as well as for
individual component developers.

Implications for component management
infrastructure
The exception handling service described in this paper
relies on descriptions of the normal behavior of
components, as well as on descriptions of how this
behavior might fail. The need to provide this
information for each individual component can be
greatly facilitated by the existence of standardized
taxonomies of common component and connector
classes annotated with failure mode information.

Such taxonomies are analogous to taxonomies of
professions and skills used in the job market. There
are many good reasons for developing such
taxonomies other than failure mode analysis. For
example, the existence of component class taxonomies
would assist component developers to focus their
energies on developing “useful” types of components,
it would help application developers locate and
compare the right components for their applications,
etc. A number of academic and industrial projects are
focused on developing taxonomies of components
(Prieto-Diaz, 1987; Barn 1997) and connectors (Shaw,
1996; Dellarocas, 1997). The novel proposal here is
that such taxonomies should be augmented with
failure mode information.

Another prerequisite for the successful implementation
of an exception handling service is the existence of
comprehensive knowledge bases of exception handling
expertise. Such knowledge bases should contain
information on how to detect, diagnose and resolve
exceptional conditions. Currently, such knowledge
bases are still an object of ongoing research (Klein,

1997). The Adaptive Systems and Evolutionary
Software (ASES) research group at MIT is in the
process of developing such a knowledge base.

Implications for component developers
In order for individual components to be able to
participate in the exception handling system described
in this paper, they must satisfy two requirements:

1. Provide a set of “credentials”, that is, a
specification of their normal behavior,
performance and resource requirements. These
credentials are necessary, both for selecting
components and for comparison with a
component’s actual behavior in order to detect
exceptional conditions. The need for such
specifications is becoming widely accepted in the
component-based software engineering
community. Although several projects are
underway, no standards have emerged yet. One
significant effort in this direction is the joint work
undertaken by Sterling Software Inc. and
Microsoft to define information models based on
the Unified Modeling Language (UML, 1997) for
storage of components in the Microsoft Repository
(Microsoft, 1997).

2. Provide two additional interfaces for
communication with the exception handling
infrastructure: An introspection interface, which
allows the exception handling engine to monitor
the component’s current behavior and progress,
and a adaptation interface, which allows the
engine to ask a component to reconfigure/adapt its
behavior as a consequence of an exception
resolution strategy. The idea of these two
interfaces as a standardized requirement for all
software components is novel. Previous research
in Distributed Artificial Intelligence suggests that
in many cases software agents must have some
level of self-awareness and self-adaptation in
order to support effective coordination even in the
absence of exceptions (Findler, 1988). The
intention of our proposal is to define several
different levels of sophistication for these
interfaces. Component developers would then
choose to provide the interfaces at the desirable
level of sophistication. More sophisticated
introspection and adaptation interfaces would
allow better detection, diagnosis and resolution of
exceptions but would increase the complexity (and
cost) of the component. This way, a component’s
capability to collaborate with an exception
handling infrastructure will become a



differentiating factor in the marketplace of
software components.

5. Conclusions

This paper argues that component-based software
development introduces additional sources of risk
because (i) independently developed components
cannot be fully trusted to conform to their published
specifications and (ii) very often, software failures are
caused by systemic patterns of interaction that cannot
be localized to any individual component. The paper
articulates the need for a separate exception handling
infrastructure to address these issues. The proposed
approach is based on the following key features:

• It creates a clean separation between the
normative and exception handling functions in
component-based software systems. Components
focus on executing their own “normal” problem
solving behavior, while an exception handling
service focuses on detecting and resolving
exceptions in the system as a whole.

• It makes use of a taxonomy of domain-specific
component and connector types, augmented with
failure mode information, in order to instrument a
set of base components with additional, exception
detecting, sentinel components.

• The exception handling service works by applying
a knowledge base of generic and highly reusable
exception handling expertise to the particular run-
time contexts it faces.

• The “cost of admission” for this approach is only
that components implement at least a minimum
set of interfaces that require only self-awareness
and self-adaptation.

• This technology can be realized as a standardized
infrastructural (middleware) service that can add
exception handling to any component-based
system with appropriate interfaces.

 As noted above, these innovations enable easier
component development, better exception handling
and easier specification of exception handling
behavior. These benefits translate in turn into more
reliable, predictable and efficient component-based
software systems.

Acknowledgments

I’d like to thank Mark Klein for his invaluable
contributions to the ideas underlying the paper.

References

Barn, B. (1997) “A classification model for
component-based development” TI Technical Journal,
April 1997

Barnett, J. A. (1984). “How Much Is Control
Knowledge Worth? A Primitive Example.” Artificial
Intelligence 22(1): 77-89.

Chandrasekaran, B. and Mittal S. (1983). “Deep
Versus Compiled Knowledge Approaches To
Diagnostic Problem Solving.” Int. J. Man-Machine
Studies: 425-436.

Clancey, W. J. (1984). “Classification Problem
Solving.” Aaai: 49-55.

Dellarocas, C. (1997). “Towards A Design Handbook
for Integrating Software Components”. Proceedings of
the 5th International Symposium on Assessment of
Software Tools (SAST’97), Pittsburgh, PA: 3-13.

Findler, N. V. and Lo R. (1988). An Examination of
Distributed Planning in the World of Air Traffic
Control. Readings in Distributed Artificial
Intelligence. A. H. Bond and L. Gasser. California,
Morgan Kaufmann: 617--627.

Genesereth, M. R. (1982). Diagnosis Using
Hierarchical Design Models.

Gruber, T. R. (1989). “A Method For Acquiring
Strategic Knowledge.” Knowledge Acquisition 1(3):
255-277.

Klein, M. (1991). “Supporting Conflict Resolution in
Cooperative Design Systems.” IEEE Systems Man and
Cybernetics 21(6).

Klein, M. (1997). “An Exception Handling Approach
to Enhancing Consistency, Completeness and
Correctness in Collaborative Requirements Capture.”
Concurrent Engineering Research and
Applications(March).

Malone, T. W. and Crowston, K.G. (1994). “The
interdisciplinary study of Coordination.” ACM
Computing Surveys 26(1): 87-119.



Microsoft (1997). “Component Description
Information Model” July 1997. See
http://www.microsoft.com/repository

Prieto-Diaz R. and Freeman P. (1987) “Classifying
Software for Reusability.” IEEE Software 4(1): 6-16

Shaw, M. et. al. (1995). “Abstractions for Software
Architecture and Tools to Support them.” IEEE
Transactions on Software Engineering 21 (4): 314-
335.

Shaw, M. (1997). “Software Architecture and
Component-based Development”. Keynote address at
the 5th International Symposium on Assessment of
Software Tools (SAST’97), Pittsburgh, PA.

UML (1997) The Unified Modeling Language,
Version 1.1,
http://www.rational.com/uml/documentation.html.


	Abstract
	1. The Challenge
	2. An Exception Handling Service for Component-based Software
	3. Architectural Overview
	4. Implications for Infrastructure and Component Developers
	5. Conclusions
	Acknowledgments
	References
	Figure 1: Summary of proposed exception management approach.

