
Sterling Software 1

1. Challenges to CBD

Much of the existing work in component-based
software technology has concentrated on developing
infrastructure capabilities and middleware solutions for
connecting independent pieces of system functionality. The
result of this work is a range of maturing infrastructure
products for supporting deployment of distributed systems.
Examples include message-oriented middleware (MOM)
products such as Microsoft’s MQ Server and IBM’s
MQSeries, and object request brokers (ORBs) such as
Microsoft’s Distributed Component Object Model (DCOM)
and the various implementations of the Object Management
Group’s (OMG’s) Common Object Request Broker
Architecture (CORBA) [3].

The availability of these products has led many
application developers to consider their use in the
development and deployment of large, distributed, mission-
critical applications requiring robust operation in the face of
high transaction rates, multiple simultaneous users, and so
on. However, to achieve this requires substantially more
than the component infrastructure products now available. It
requires a move from component infrastructure products to a
broader notion of component-based development (CBD).
In particular, to be effective, developers of large-scale,
mission-critical applications require many additional
capabilities, including ways to:

• reengineer legacy applications to harvest existing components
reusable in other applications, or replaceable by newer
technologies;

• find suitable components both locally and externally;

• integrate components implemented in a variety of different
technologies;

• validate a component’s behavior before using it;

• manage multiple implementations of the same component in
different technologies, and as it evolves over time.

It is our belief that large-scale adoption of component-
oriented approaches in these demanding business
applications must be built on four key advances:

• methods for designing CBD solutions that help the organization
focus on the major functional pieces of their domain, and how
those pieces will interact;

• tools that support specification of business components using
techniques that allow the functionality to be described
independently of a particular implementation technology;

• implementation techniques for components that support
demanding requirements for key business goals such as
performance, usability, availability, etc.;

• a component management and assembly infrastructure to knit
together all the pieces specified, built, and acquired, even when
those pieces have been developed using different technologies, or
by different people.

The next two sections of this paper briefly expand on
these ideas, and focus on how these advances can be realized
in practice. The paper concludes with a brief summary.1

2. CBD-Oriented Methods
The move toward CBD requires existing software

analysis and design approaches to be reconsidered. In
particular, any method supporting CBD is required to
exhibit at least the following 3 key principles:

• A clear separation of component specification from its design
and implementation. This allows component behavior to be
described independently of its implementation, and supports the
possibility of multiple alternate component implementations for
the same specification.

• An interface-focused design approach. The goal of the CBD
method must be the definition of encapsulated behavior
accessible through well-defined interfaces. Interfaces provide a
contract between providers and consumers of services allowing
greater independence across components.

1 We only address the first 2 issues due to space limitations. A much fuller

treatment of these ideas is available elsewhere (e.g., [2]).

From Component Infrastructure
To Component-Based Development

Alan W. Brown
Sterling Software

6620 Chase Oaks Blvd., M/S 8515
Plano, TX 75023, USA.

$ODQB%URZQ#VWHUOLQJ�FRP

Sterling Software 2

• More formally recorded component semantics. Informal
descriptions of component behavior can be provided via
operation signatures and informal text. However, details of
operation semantics require formal, verifiable descriptions using
preconditions and post-conditions attached to each operation.
Without this, component behavior is ambiguous and open to
misinterpretation by its potential users.

• A rigorously recorded refinement process. Stages in the
specification and design process must be recorded to maintain a
design record of a component’s evolution. Justification for each
refinement must also be captured. Use of a component by a third
party requires this level of information to assure its quality and
to understand aspects of the designers’ rationale.

To satisfy these requirements, we consider an approach
to component modeling inspired by Catalysis, a “next
generation methodology for modeling and constructing open
systems from components and frameworks” developed by
Icon and TriReme [1].

There are seven key ideas that characterize a Catalysis-
inspired approach to component modeling and satisfy the
requirements described above. We discuss each of these in
turn.

2.1 Describe the static aspects of the domain

A user describes the static structure of the elements of
interest within a domain as a set of related types in a type
model. The structural relationships among types represent
the static constraints that exist among elements of the
domain.

For each type in a domain the user describes its features
(attributes and operations) in detail. Particularly important
are the pre and post conditions that define the semantics of
each operation by describing the state that must exist before
the operation can take place, and the state that will result
having executed the operation. Informal definitions of the
pre and post condition can be given. However, more
valuable are pre and post conditions in some formal,
verifiable notation supported by the component modeling
tool.

2.2 Describe the dynamic aspects of the domain

Interactions among types are modeled as collaborations.
Changes of state in a domain occur through interactions
among behavior bearing types in that domain. These
interactions are represented as collaborations in which types
play roles in which they initiate or respond to requests to
carry out actions.

A collaboration diagram records the interactions among
types in the domain as a sequence of messages (operation
invocations). A type responds to a message by invoking the
named operation with the given parameters and performing
the state change defined in the pre and post conditions of
that operation.

2.3 Allow multiple views of the domain

At any time the user may wish to focus attention on some
set of types or interactions in a domain. To do this a user
must be able to create views focussed only on those elements
that are of interest for some specific purpose.

2.4 Track each important step in the design process

As a user progresses with their modeling there will be
important stages in which they will wish to record the
current model. This can be used for backup purposes should
the user wish to return to that point in the modeling, and as
an historical record of design rationale of how the final
model evolved.

Modeling progression within a domain is recorded
through the concept of model conformance. A conformance
is a relationship between two descriptions of the same thing
(types, collaborations etc.) [1]. A conformance is
accompanied by a mapping that justifies the conformance
claim. Several types of conformance exist, including: A
component implementation conforms to the specification; A
class that implements a set of behavior conforms to a type
that specifies the behavior; A set of fine-grained actions
conform to a more abstract single joint action.

2.5 Support reuse of previously modeled (parts of)
domains

It is typical for modeling to be carried out by groups of
users over an extended period. To support this it must be
possible to model discrete parts of a domain, and allow those
parts to be combined in semantically-meaningful ways.
Domains can be considered to act as scoping boundaries for
describing behavior. A user can import one domain into
another, or can decompose one larger domain into a number
of smaller domains. This supports both top down and bottom
up development methods.

2.6 Package appropriate behavior as interfaces of a
component

Having modeled the static and dynamic aspects of a
domain, the user must decide how that behavior should be
packaged in terms of implementable units which may be
developed independently, shared across projects, and
executed on different machines.

This packaging takes place by describing which
interfaces will be packaged within a single component
specification. Each behavior-bearing type is an interface
offering a set of operations. The user selectively decides on
the grouping of those interfaces into components
specifications. Each component specification is an
identification of the interfaces it supports.

Sterling Software 3

2.7 Check for completeness and consistency

A user may perform component modeling purely as an
intellectual exercise to provide greater understanding of
some area of their business. However, more typically a user
performs that modeling as the step toward one of two goals.

The first goal is to create a component specification
which can serve as a definition of the requirements for some
externally acquirable or acquired implementation. In this
case the user will not implement the component themselves,
but will rely on the component specification as a complete
and unambiguous contract to be met by an external provider
of that implementation.

The second goal is to create a component specification as
a preparatory step before producing an implementation
satisfying that behavior. In this case the user will either
directly implement each of the operations offered by the
component in some programming language, or will develop
models describing the implementation details of those
operations from which code can be automatically generated
for some target platform. In either case the component
specification is the basis on which the implementation will
be created.

In a component modeling tool there must be a number of
consistency and completeness checks which the user can
execute to ensure that the component specification is
suitable for either of these goals.

3. Tool Support for CBD
Designing and building components requires new tools

and techniques. With middleware and the underlying
component technologies beginning to mature, we can now
concentrate on identifying other elements in a CBD tool
architecture.

A CBD tool architecture should of course itself be
component based. The architecture should allow users to
identify and use their preferred components. Thus a CBD
tool architecture is actually a framework. Such a framework
however, needs to define the basic technology within which
the selected components will operate.

Figure 1 shows an example of an architecture for a CBD
toolset that illustrates many of the basic elements required
for CBD support. In particular, the figure shows the CBD
toolset divided into its three tiers of client, rules, and server.
The client aspects provide the functionality made available
to users of the toolset. It consists of modeling, rendering,
model management, and implementation services. The rules
aspects provide the underlying component modeling engine
supporting a CBD approach. The server aspects provide
persistent storage and interchange of component models
with external data sources.

One of fundamental beliefs with respect to CBD is that a
CBD toolset must provide the capability of generating
technology-specific components using the component
specification data recorded in the information model of the
component modeling engine, and persisted in the some form
of data repository. Although the primary implementation
environment is the generation component, it is sometimes
necessary to transform component model information to
external generation environments. Transforming
information from one model to another is conceptually an
easy problem. It only becomes difficult when we try to
minimize the information loss during the mapping process.
Transform tools are necessarily hand written for each target
implementation environment.

Figure 1: An Illustrative CBD Tool Architecture.

In the remainder of this section we focus on one of the
key elements of this CBD tool architecture: the persistent
data repository. The repository is a central element in this
illustrative tool architecture. Many possible products could
be used for this element, but perhaps the Microsoft
Repository offers the greatest promise of sophisticated
functionality, wide industry acceptance, and compatibility
with an extensive range of tools. More specifically, for a tool
developer such as Sterling Software, the Microsoft
Repository is important for three main reasons.

First, Sterling Software’s participation in the joint design
effort of the Microsoft Repository led to the production of
several public information models to enable the storage of
components in the Microsoft Repository. Hence, this choice
is an obvious one for us, and relates well to existing products
with which we are familiar.

Second, the information models utilize a subset of the
Unified Modeling Language (UML) information model

&RPSRQHQW�0RGHOLQJ�(QJLQH

&RPSRQHQW�5HSRVLWRU\

9LVXDO

0RGHOLQJ

7RRO

&RPSRQHQW

*HQHUDWLRQ

0RGHO

0JW�

5HSRUWLQJ

&RPSRQHQW

&DWDORJ

&OLHQW

5XOHV

6HUYHU

7KUHH�WLHU

DUFKLWHFWXUH

&%'�7RRO�)UDPHZRUN

([WHUQDO

'%

,QWHUQDO

'%

'DWD

,QWHUFKDQJH

Sterling Software 4

while extending the model with other component modeling
concepts. More specifically, the Component Description
information model (Cde) address the areas of component
specification, implementation and executable information.
The mapping from component modeling approaches to this
information model is therefore well-defined and
straightforward.

Third, a standard information model means that many
organizations can offer components to be stored in the
Microsoft Repository or use components currently stored in
the Microsoft Repository. Its ubiquitous nature (currently it
is packaged as part of the Visual Basic product) suggests
that it is likely to become the dominant standard for storing
component information. Figure 2 illustrates how such a
repository can be used to store and use components.

Figure 2: A Component Repository.

As the use of the Microsoft Repository flourishes, the
types of components stored and the types of applications
being constructed will become apparent and the need for a
component cataloging facility will become paramount.
Although the existing component information model
provides some rudimentary constructs for component
searching, more sophisticated modeling will be required. A
component catalog engine which facilitates sophisticated
search and retrieval can be appended to the component
modeling engine. The user interface for the component
catalog can utilize the user’s preferred Web Browser.

A CBD tool architecture as described above provides
several advantages. Users can select their preferred UML
compliant OOA tool. For leading OOA tools the architecture
will provide standard mappings of concepts in the OOA tool
to Component Modeling concepts allowing for some limited
generation of the necessary transform tools. Standardization
on the underlying tool technology (e.g. COM, Automation)
also means that the necessary knowledge to thread together
a preferred set of tools is widely available.

4. Summary and Conclusions
Component-based development of software is an

important development approach for software systems which
must be rapidly assembled, take advantage of the latest web-
based technologies, and be amenable to change as both the
technology and application needs evolve. One of the key
challenges facing software engineers is to make CBD an
efficient and effective practice which does not succumb to
the shortcomings of previous reuse-based efforts of the
1970s and 1980s. The keys to this include:

� Separation of component specification from component
implementation to enable technology-independent
application design;

� Use of more rigorous descriptions of component
behaviors via methods that encourage interface-level
design;

� Flexible tool architectures for CBD based on existing
tool technologies and standards.

This paper has briefly explored some of these issues in the
context of CBD tool support that will enhance the
effectiveness and viability of large-scale software reuse
through the sharing of components – software packages
offering services through their interfaces. The result is an
interface-based approach to application development and
design that encourages the creation of systems that are more
easily distributed, re-partitioned, and reused.

The ideas expressed in this paper are being pursued by
Sterling Software and form the basis for a new generation of
CBD technology that will greatly improve the ease with
which component-based systems can be developed,
deployed, and upgraded.

Acknowledgments
This paper draws on the work of Icon Computing and

TriReme in developing the Catalysis method. For further
information on Catalysis see http://www.iconcomp.com.

The ideas and techniques described in this paper have
been developed cooperatively with a number of colleagues at
Sterling Software. In particular, we recognize the important
contributions made by Balbir Barn, John Cheesman, John
Dodd, Bill Gibson, Paul Sanders, and Keith Short.

References
1. Desmond F. D’Souza and Alan C. Wills; “Objects,

Components, And Frameworks with UML – the Catalysis
Approach”; Addison-Wesley, Reading, Mass. 1997.

2. Balbir Barn and Alan W. Brown, “Improving Software Reuse
Through Component-Based Development Tools”, Submitted
for Publication, October 1997.

3. A.W. Brown (Ed.), “Component-Based Software Engineering”,
IEEE Computer Soc. Press, Los Alamitos CA, 1996.

OOA
Tool

Component
Construction

Tool

Component
Consumer

2. Import
 Specification

3. Publish
 Component&RPSRQHQW

6SHFLILFDWLRQV

&RPSRQHQW

,PSOHPHQWDWLRQV

1.Create
 Specification

4.Build
 Applicaton

0LFURVRIW

5HSRVLWRU\

	1. Challenges to CBD
	2. CBD-Oriented Methods
	2.1 Describe the static aspects of the domain
	2.2 Describe the dynamic aspects of the domain
	2.3 Allow multiple views of the domain
	2.4 Track each important step in the design process
	2.5 Support reuse of previously modeled (parts of) domains
	2.6 Package appropriate behavior as interfaces of a component
	2.7 Check for completeness and consistency

	3. Tool Support for CBD
	4. Summary and Conclusions
	Acknowledgments
	References
	Figure 1: An Illustrative CBD Tool Architecture.
	Figure 2: A Component Repository.

