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Abstract

Most of the current concurrent object-oriented approaches do not address the issue of separation of concern

between synchronization and scheduling controls inside the concurrent objects. This paper presents a

concurrent object-oriented model in which a concurrent object, which represents a shared resource

abstraction in our model, is  decomposed into a hierarchy of abstractions: a shared data abstraction, a

synchronization abstraction, and a  scheduling abstraction. It will be shown that the separation of concern

among  the three major components of the concurrent objects avoids many of the conceptual difficulties that

arise when integrating concurrency into object-oriented paradigm. Our model provides explicit, declarative,

and reusable first class components for synchronization and scheduling controls as it has been the case for

data and operations in the sequential object-oriented languages. The notion of scheduling policy inheritance

in our model facilitates the process of engineering adaptability in the development of  the  intelligent

reactive/adaptive systems.

keywords: Concurrent object-oriented programming, Soft-real-time/Adaptive systems, Reuse,

Synchronization constraints,  Scheduling protocols,  Adaptive-Arena.
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1. Introduction

Building a concurrent application requires the programmer to specify the synchronization and

scheduling constraints of the concurrent actions and in order to specify these constraints the programmer

has to be provided with constructs that will enable him to express these constraints. Concurrent

programming languages that  provide these constructs can be classified as either procedural, like Concurrent

C[21], SR[5], Ada83[13], or object-oriented, like Composition-Filters [2], Capsule[22], DRAGOON [6],

and µC++ [10]. Using the object-oriented paradigm [9, 20, 26, 30, 34] to build the concurrent applications

is preferable to the procedural model since it allows code reuse and programming by extension, and

enhances the management of large-scale software projects.

The Adaptive-Arena is a concurrent object-oriented language advocates the separation of

synchronization  and scheduling controls from the method bodies in order to regulate the intra-object

concurrency as well as  promote code reusability. Therefore, concurrency control as well as the method

bodies within the concurrent objects can be reused, extended, or overridden. The Adaptive-Arena facilitates

the design of extensible libraries of concurrent components as well as the development of the design

patterns for a wide range of concurrency problems. The intra-object concurrency is controlled through  local

synchronization and scheduling decisions  for each  object.

In the next section we briefly overview the existing approaches for  integrating concurrency with the

object-oriented paradigm. In the subsequent sections, we  present the Adaptive-Arena model along with its

solutions for a wide range of concurrency problems. Next, The Adaptive-Arena  model is compared with

the related work and finally the paper’s contributions are summarized.

2. Concurrent Object-Oriented Programming

Several of the concurrent programming languages have used the notion of encapsulated object in their

programming models. For example,  Ada95[14] uses a server-based approach based on the rendezvous

mechanism, Monitors[25] uses an abstract data type mechanism, Concurrent C[21], SR[5], and [4, 11, 24]

are based on the abstract data type with path expressions, approaches that are based on the sequential

objects like [3, 10, 22, 28], and actor-based approaches[1].
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Synchronization and scheduling controls form the major components of concurrent systems and a

number of models [12, 19, 23, 28, 2] have been proposed in order to employ the object-oriented paradigm

in building these systems. The integration of concurrency and object-oriented technology raised many

problems that makes it difficult to employ the object-oriented technology in building the concurrent systems

in a straightforward manner. Therefore, the initial attempts [3, 10, 12, 19, 22, 23, 28] were made to separate

the synchronization code from the functional code. The separation of concern raised another problem that is

the difficulty of reusing the synchronization code. The tight coupling between the synchronization code and

the functional code causes limitations on code reuse and programming by extension. Synchronization

constraints often conflict with inheritance and that what has been classified by [28] as the inheritance

anomaly problem where the addition of a method in the subclass requires modifications to the

synchronization constraints of methods in the superclass. The distinguishing between synchronization and

scheduling controls was first presented in [15, 16] where concurrent systems are partitioned into two major

components: concurrency control and functionality control. Capsules[22] and Ada95[14] addressed the

issue of separation of control between synchronization and scheduling controls but did not completely

utilize its concepts. Like synchronization control, scheduling control may cause another potential problem

when employing the object-oriented technology in building the concurrent object-oriented systems  and that

is due to  the interference between scheduling and inheritance. Scheduling should be represented in term of

first class components in order to enhance code reusability. Scheduling policies should not cause limitations

on code reuse; rather language constructs should be provided in order to allow reuse of these scheduling

policies. The isolation of the scheduling policy from the synchronization code and functional code will

enhance code reusability and eliminate the interference between scheduling and inheritance.

It has been stated in [7] that  the  hierarchical representation of the software system  has a major impact

on the design and development of reusable components. Therefore, our initial attempt was  to focus on

aspects that are fundamental to representation of application entities. We partition the concurrent object into

a hierarchy of  abstractions that will aid in the design and the development of the concurrent applications.

Adaptability [16, 17] is an important factor that enables  complex systems to evolve in order to meet future

needs. Therefore, our approach identifies the methodology into  which design patterns [17, 20, 32] for a
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wide range of concurrency problems, similar to the design patterns presented in the ACE framework [32],

can be easily identified and implemented.

In this paper, we examine the manner in which changes in the components of an object of  a concurrent

class affect other components of the same object. The focus here is to partition the concurrent system into a

set of components, synchronization, scheduling, and functionality controls,  in order to support inheritance

for the these components, and minimize changes that are due to the interaction between these components if

complete reusability can not be achieved. The separation of concerns is handled within our framework by

defining different constructs for synchronization and scheduling controls. Method invocations within the

object can be serialized or concurrent based on the specification of scheduling and synchronization

constraints at the object level.

The primary goal  of  our model is to  integrate concurrency into the object-oriented paradigm [9, 26,

30] and introduce a new notion that we call synchronization and scheduling abstractions. In our framework,

we define abstraction based on the definitions given in [7, 9, 33] as being a mechanism that  provides the

conceptual boundaries that will aid the developer in building  a hierarchical view of the concurrent system

components. Scheduling and synchronization abstractions are expressible as first class components. By

giving  abstract names for the synchronization and scheduling expressions we can reuse and extend those

expressions in subclasses. Scheduling abstractions  in our framework are used in order to implement

different scheduling protocols. These scheduling abstractions hide the underlying implementation of these

scheduling protocols. Our scheduling abstractions will be used to implement the inter-invocation and intra-

invocation scheduling policies. In our model, we defined a new user-defined type that we call arena, which

has similar capabilities to C++ [34] classes except for the new features that we added in order to support

reuse for the concurrent applications and regulate the intra-object concurrency.  Through the use of

synchronization and scheduling abstractions, the behavior of an object can be reused, specialized, or

extended.
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3. Adaptive Arena Model

The Adaptive-Arena, which represents a shared resource abstraction, is conceptually divided into three

major components: shared data abstraction, synchronization abstraction, and scheduling abstraction. The

shared data abstraction is composed of the shared data and the functionality control that  has  similar

concepts to sequential objects. The functionality control of the shared data abstraction  will consist of a set

of  member functions that will access the shared data. Synchronization and scheduling abstractions control

the access of the member functions to the shared data.  Figure 1 shows the general specification of the

Adaptive-Arena  class in our framework.

3.1 Synchronization Abstraction

Synchronization controls are the decision controls that enable or disable a nondeterministic method

invocation for selection and they are implemented using guards and barriers in our model. In our

framework, synchronization abstraction is composed of three components synchronization variables,

precondition definitions, and postcondition definitions. Synchronization variables are the set of the

variables used in constructing the synchronization expressions that are given abstract names.

Synchronization variables can be declared using the sync_var language construct. The precondition

definitions block is composed of three components: barrier_def which is used to give  abstract names,

barrier names refer to the internal state of an object, for the synchronization expressions, local_barrier

which is used to associate barrier names with the member functions, and remote_barrier. In [15],

remote_barrier  is called mutual control,  which is used to associate Boolean expressions, which refer to the

internal state of an object along with the caller parameters, with  member functions. The postcondition

definitions block is composed of two components: post_action, which is used to declare the postaction

functions that are used to modify the synchronization variables, and triggers, which are used to create an

association between the postaction functions and the member functions which operate on  the shared data;

Only a post function that has been defined in the post_action block may have write access to the

synchronization variables; Other member functions of the adaptive arena have  read only access to the

synchronization variables. The local and remote components represent the named guards or barriers  that

are associated with methods rather than sets. Postactions are executed in mutual execution since a
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Arena class-name {

}

public:

private:
Shared Data
Abstraction

public_method_name(parameter_list);
...

data_type variable_name;
Shared Data

Functionality
Control

Synchronization
Abstraction

sync_var:
   data_type variable_name;

Synchronization
Variables

barrier_def:
   barrier_name: boolean_expression;
local_barrier:
   barrier_name: public_method_name(parameter_list);
remote_barrier:
   public_method_name(parameter_list): boolean_expression;

Precondition
Definitions

post_action:
   post_method_name(parameter_list);
trigger:
   public_method_name(parameter_list) : {

post_method_name(..) };

Postcondition
Definitions

Scheduling
Abstraction

par:
   par-name: [parallel_expression]  (Boolean_expression);
pref:
   pref-name: [preference_expression];
seq:
   seq-name: [sequential_expression];
sched:
    sequence_name: [General_Scheduling_Expression];

Scheduling
Expressions

inter-control:
   sequence_name;

intra-control:
   public_method_name(parameter_list) by(expression);

inter-control

intra-control

Figure 1. The Adaptive-Arena Class Representation.
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postaction may reference a synchronization variable that has been used in more than one barrier. A

modification of a synchronization variable that has been defined in the sync_var block by a non postaction

method is detected by the translator and reported as an error.

3.2 Scheduling Abstraction

During the execution of a concurrent program, threads race  to be scheduled. The order of the selection

of these schedulable entities can be specified by scheduling expressions [4, 11, 24] and  these scheduling

expressions are called scheduling policies or scheduling protocols. Scheduling protocols form a major

component of the concurrent systems. The interaction and ordering of method executions in our model

within the concurrent object can be specified by  expressions that have similar capabilities to Path

Expressions[4, 11, 24]. In order to support the addition of new scheduling policies for the newly added

methods and to allow the extension of the scheduling policies for the existing methods within the concurrent

object,  we created what is called Scheduling abstraction, which allows the specification of  the scheduling

protocols in isolation of the sequential code for the method bodies. Scheduling abstraction in our model has

been addressed at two levels: inter-invocation control,  which is used to specify the order of execution for a

set of method invocations, and intra-invocation control,  which is used to specify the order of servicing

pending requests in the method queue.

3.2.1 Inter-invocation Control

Scheduling abstraction at the inter-invocation has been addressed in our framework at three dimensions:

parallel, sequential, and  preference. We created  a construct for each of these scheduling components.

Abstract names have been given to the parallel, sequential, and preference scheduling expressions in order

to allow reusability of these scheduling expressions in the derived classes. The inter-invocation control in

our proposed model is composed of  five components: par, pref, seq, sched, and inter-control. Through the

use of the  par construct we can identify the set of methods that may run in parallel and give that set an

abstract name that can be reused in the derived classes in order to create an extended set. The pref and the

seq  constructs are used to name and create different scheduling subexpressions with different properties

that will be discussed shortly. The sched construct is used to  define the scheduling policy of the adaptive

arena by combining the subexpressions that have been defined in the pref and the seq blocks. Using the



8

inter-control construct we can identify the scheduling policy that should be applied  during runtime. A

concurrent  adaptive object may choose to switch from one scheduling policy into another by using on the

fly analysis. Through the use of this construct we can create an intelligent adaptive object.  By giving

abstract names for these  scheduling expressions, we enhance code reusability for these scheduling

expressions.

These scheduling abstract names can be inherited in order to define new scheduling abstractions for

inherited and new methods, or a new scheduling abstraction can be defined for the inherited and new

methods. By doing so, we support code reusability at two levels: functional  level and behavioral level.

Each of the behavioral components can be defined, inherited, or overridden. Several access protocols can be

expressed and implemented easily using our scheduling constructs.

To construct different scheduling policies  that will emulate the interaction between the different

competing methods within the concurrent object and to specify the order of their execution we designed five

scheduling operators that will aid in the specification and implementation of these scheduling policies. The

following sections will review in detail these scheduling operators.

3.2.1.1 Nondeterministic Selection (+)

This operator  is used to simulate the nondeterministic behavior for a set of open alternatives in the

concurrent application. The execution for the  methods  in the sequence that has been specified will be

carried out in some arbitrary order. For example the expression s0: [ mi + mj ]  is a legal sequence where s0:

is the sequence name. If this operator is used to separate sequences rather than method names, then the same

semantics will be held. The nondeterministic operator, +, is used to separate a list of schedulable entities.

There is no guarantee in the order of execution for these entities. Rather we assume fairness and eventually

each of these open alternatives will be selected for execution. The feasibility of the fairness notion is

supported  through the use of random assignments to  priority variables [18, 31].

3.2.1.2 Sequencing Operator (;)

This operator is used to enforce the order of the execution for a set of methods  in the order that has

been specified. For example, s0: [ mi; mj ] is a legal expression in our model. After the completion of method

mi, the only method that may start executing next is method mj and if there are any another pending

invocations for another methods then these invocations will be delayed until the acceptance and completion
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of an invocation of  method mj. If the inter-control construct of an object has selected this sequence for

scheduling then the only acceptable invocation will be an invocation for method mi. The sequential operator

“ ; ”  is used to impose a strict sequence order on a list of schedulable entities. For example, in the sequence

Mi;Mj, method Mj can be started only if the last terminated  method is Mi , that is to say, method Mi upon

termination will set the identity of the next schedulable method  which is  Mj. In general, if the strict

sequence expression has  the following format M1;M2; ... ;Mn then all of these methods will be executed in a

mutual exclusion and once method Mi  terminates then it will set the identify of the next schedulable

method, which is method Mj, where j=i+1 , 1 i n - 1, 2 j n.≤ ≤ ≤ ≤ and  If the strict sequence expression is

composed of a set of sequence names, like S1;S2; ... ;Sn , rather than method names, then the first method

that appears at the beginning of sequence Sj is allowed to start its execution once the rightmost method in

sequences Si finishes its execution where j=i+1, 1 i n - 1, 2 j n.≤ ≤ ≤ ≤ and .

3.2.1.3 Preference Operator (>)

This operator can be used to prioritize the alternatives easily and incrementally reuse the scheduling

behavior of a superclass. The prioritized entries of the soft-real-time applications can be easily implemented

through the use of this operator. The following expression s0: [ mi > mj ] is a legal expression in our model.

s0  is the name of the sequence and the meaning of this sequence is as follows: the execution of mi is always

preferred over method  mj;  even if  there is more than one pending invocation for mj. The invocations of mj

will be given the opportunity  to execute only if there is no pending invocation for mi. Method mj may be

preceded by a sequence rather than a single method and in this case the preference  will be given to a set  of

methods rather than a single method as in the following example s1: [ mk > ml ] , s2: [ s1 > mj ]. The

invocation of method mj  can be started only if there is no pending invocation in the  sequence s1.

3.2.1.4 Alternation Operator (>>)

The alternation operator is used to keep alternating the execution of two method or groups of methods.

The following expression s0: [ mi >> mj ] is a legal expression in our model. s0  is the name of the sequence

and the meaning of this sequence is as follows: if there is a pending invocation for  method  mi  and another

pending invocation for method mj , then preference is given to the execution of one invocation  for method
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mi followed by the execution of one invocation for method mj. If there is more than one pending invocation

for each of these methods then the concurrent object  will keep repeating the above protocol as long as there

are pending invocations for these methods. If  mj is preceded by a sequence  rather than a single operation

as in the following example s1: [ mk >> ml ] ,  s2: [ s1 >> mj ] , then a pending invocation for  method mj

should be executed after scanning the pending invocations of  the methods in the sequence  s1 and executing

at most one pending invocation in the sequence s1. The alternation operator can be used to keep alternating

between two method groups and it has the following format S1>>S2 . If there is more than one pending

invocation that belong to methods in one of the two  groups S1, and S2 , then each time a method call from

each group will be selected for execution. If there is no pending invocation which belong to group S2 then

method calls which belong to S1 will be allowed to start their execution as long as there is no pending

invocation which belong to a method in group S2. This operator can be used to implement  the protocol

Multiple Readers or One Writer with Writers Having a Higher Priority & no Indefinite Waiting for Readers

[22].

3.2.1.5 Strict-precedence  Operator (<<)

The strict-precedence operator is used to test the identity of the last terminated method. The general

format of a scheduling expression that uses this operator is  (list of methods) << sequence , and the

semantic of this expression is as follows: the first schedulable method in the set sequence  is allowed to start

executing if the last terminated method belongs to the set (list of methods); If the scheduling expression has

the following format: ~(list of methods) << sequence  then the meaning of this expression is as follows: the

first method in sequence is allowed to start executing if the last terminated method does not belong to the

set  (list of methods).

3.2.2 Intra-invocation Control

Request Parameters is one of the categories that has been  identified by Bloom [8] for expressing

synchronization constraints. A server object should be able to access the parameters of the request, method

invocation, in order to accept or block a request of a client. This category has been defined by Elrad [15] as

mutual control. Capsules [22] supports this category  through the use of the suchthat construct , and Ada

[13, 14] provides the requeue statement in order to simulate it. Each method in the synchronized object is
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associated with a queue for  queuing the incoming requests if they can not be serviced immediately. The

order of servicing these requests is defined by [15] as forerunner control. These queued requests can be

serviced by the FIFO policy or the priority of the caller in Ada. In Capsules, the programmer can define his

own scheduling policy for servicing these pending calls through the use of the by clause. In our model, we

provide the by construct, which has similar capabilities to the one that presented in [22]. Through the use of

the by construct, we have a complete control over the order of execution of pending requests in the method

queues.

3.2.3 Evaluating the Scheduling Expressions

Methods within the Adaptive Arena are, by default, executed in mutual exclusion. In order for a method

invocation to start its execution it should satisfy the synchronization constraints in the local and remote

parts, and then satisfy the scheduling restrictions. If there is no barrier associated with  a certain  method in

the remote or local specification parts then that method will be executed if the current scheduling

restrictions permit to do so. Each method is associated with a queue in order to queue the method

invocation calls. These invocation calls, by default , are executed in a FIFO order. A method call to the

Adaptive Arena is allowed to execute if after satisfying the scheduling sequence conditions the mutual

exclusion condition is satisfied or if the method call is allowed to execute in parallel  with the currently

executing method.

3.3 The Adaptive-Arena Solution

The employment of the object-oriented paradigm in  the development of concurrent systems raised many

problems that are due to inheritance and the lack of expressive constructs for the development of these

systems.  None of previous approaches[1, 3, 10, 12, 19, 22, 23, 27, 28] has addressed the distinction

between synchronization and scheduling controls. Our approach promotes reuse of the synchronization

constraints and the scheduling protocols of the concurrent objects.

In the Adaptive Arena model, we consider the thread to be the basic unit of concurrency. The adaptive

arena is a passive object. Threads access the adaptive arena passive object based on the scheduling table

that has been constructed by the runtime system of the adaptive arena model. In reality, the code generator

creates the basic entries of that table and the runtime unit puts those entries together to formulate the

scheduling table  that will be consulted by each thread upon accessing the adaptive arena passive object.
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Once a thread completes execution within the adaptive arena, it updates its corresponding entries in the

scheduling table. In this way, threads coordinate among each other through the lifetime of the passive

object. In the following two sections we present our solutions to a wide range of concurrency problems that

arise during the development of concurrent object-oriented systems.

3.3.1 Inter-invocation Control

In our model, we provide a number of constructs for controlling the order of the execution of different

methods within the concurrent object. To demonstrate the expressiveness of these constructs, we applied

them on a number of concurrency problems. Figure 2 shows the representation of the bounded buffer class

in our model. Figure 3 shows how our approach prevents the occurrence of the history-only sensitiveness

anomaly [28]. In our solution the addition of method gget(), that may execute only if the last terminated

operation is not a put operation, does not require modification of the superclass. Separating the scheduling

protocol from the synchronization code, clearly enhances  code reusability and minimizes code

modifications for the sequential and synchronization code. A scheduling protocol of a superclass can be

wrapped by a new scheduling protocol in the subclass. An abstract mixin class, like the Lock class, can be

easily mixed with another class in our framework.  The capability of locking an object can be accomplished

by inheriting the Lock class and the superclass and then define the scheduling protocol in the subclass.

Figure 4 shows our solution to the state modification anomaly [28].

The main concern in the reader/writer protocol  [6, 14, 22]  is to ensure the integrity of the shared data

and the avoidance of starvation for  readers or writers. Previous approaches used the Boolean variables

within the method bodies in order to avoid starvation and modify the superclass in order to enforce it. On

the other hand, our approach is simple, clean, and starvation free. In our approach, there is no need to

modify the sequential code of the superclass. The only necessity is to  inherit and extend the scheduling

behavior. Figure 5 shows the  representation in our model  for  the reader/writer protocol with priority for

writers. Preference is always given to writers; readers may starve. In order to implement the fair reader-

writer protocol in other approaches [6, 14, 22], method bodies should be modified in order to include a

Boolean variable that enforces the alternation and that what we try to avoid always; A subclass should not

modify the sequential code of a superclass. On the other hand, our approach does not modify the method

bodies of a  superclass. Rather it inherits the superclass and then define the new scheduling protocol without
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affecting any of the method bodies in the superclass. Figure 6 shows the representation of the fair reader-

writer protocol in our scheme after extending the class that has been presented in Figure 5.

Scheduling Wrappers are used when introducing new methods on the subclass and defining a new

scheduling protocol on top of the superclass scheduling protocol. For example, suppose we want to define

the new operation ReadNoItems, which will return the number of items that are currently in the buffer using

the bounded buffer class that has been presented in Figure 2. Unlike other approaches [3, 10, 12, 19, 22, 23,

28, 29], the scheduling protocol along with the sequential code of the superclass need not be modified in the

subclass. Figure 7 shows the  implementation of  the extended buffer in our scheme where a new method

has been added along with a new scheduling protocol. In our model, different components can be inherited

and glued together in order to allow the incremental evolution of the software system.

Sometimes there is a need  to have an explicit preference control over the order of invocation of

competing entries especially in soft-real-time applications. Therefore, a mechanism should be provided in

order to enable him to control the dispatching order. Ada95 [14] and Capsules[22] have been designed to

support building the soft-real-time applications. Capsules provides the c_waiting construct and Ada

provides a family of  entries along with the ’COUNT construct in order to prioritize a set of entries. For

example, suppose that  there are two services that a superclass provides; Service Medium and Service Low

where Medium has an absolute preference over Low. A subclass may  inherit the superclass and add a new

service High  that has a higher preference over the services of the superclass. Unlike other approaches, in

our approach the addition of the new service High will not affect the preferences in the superclass. Rather,

the subclass will use the scheduling preference of the superclass in order to implement the new scheduling

preference in the subclass. Figure 8 shows the representation  of the prioritized entries in our scheme, and

Figure 9 shows the extended prioritized entry class.

In order to build an intelligent adaptive object, a mechanism ought to be provided that will aid the object

in selecting the right scheduling policy by performing on the fly analysis during runtime. Concurrent real-

time systems will greatly benefit from this capability in our framework. Through the use of the inter-control

construct, we offer the developer the opportunity to engineer adaptability within the synchronized object, in

order to fine-tune their reactions during runtime. For example, in the bounded buffer example there is a

need to design an adaptive scheduling protocol  that prefers put over get if the buffer is less than half-full
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and get over put if the buffer is more than half-full. Figure 10  presents an example of an intelligent

adaptive buffer in the Adaptive-Arena model.

3.3.2 Intra-invocation Control

Each method in the Adaptive-Arena objects  is associated with a queue for  queuing the incoming

requests if they can not be serviced immediately. In our model, these queued requests are serviced on a

FIFO basis. If there is a desire to alter this policy, then the developer can do so through the use of the by

construct in order to specify the customized servicing policy. For example, Figure 11 shows an extended

version of the bounded buffer  where requests will be serviced based on the size of the request.
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Adapti

Arena buffer {
sync_var:
  int noitems, in, out;
barrier_def:
  NotFull :  (noitems < MaxSize);
  NotEmpty : (noitems > 0) ;
local_barrier:
  NotFull: put(int item);
  NotEmpty : get(void);
pref:
  s0: [ put (int) + get(void) ];
sched:
  s1: [ s0 ];
inter-control:
   s1;
post:
 Inc(int *value);
 Dec(int *value);
trigger:
 int put(int item): { Inc(&in); Inc(&noitems); }
 void get(void): { Inc(&out); Dec(&noitems); }
}
buffer::buffer(int size){
    max = size;
    buf = new int(max);
    int = out = 0;

}
buffer::Inc(int *value){
  ++(*value);

}
buffer::Dec(int *value){
  --(*value);

}
buffer::put(x: in integer){
    buf[in] := x;

}
int buffer::get(void )  {
    x := buf[out];
    return x;

}

Figure 2. Bounded Buffer Class Representation in
the Adaptive Arena

Arena H-buffer: public buffer {
public:

int gget(void);
local_barrier:
  NotFull: gget(void);
sched:
  s2: [ s1 +  ~(put(int)) << gget(void) ];
inter-control:
  s2;
};
H-buffer::H-buffer(int size):

 buffer(int size) ;
int H-buffer::gget(void )  {
  x := buf[out];
  return x;
}

Figure 3. Extended Bounded Buffer in the
Adaptive Arena Representation

Arena Lock:{
  int locked;
seq:
 s2: [ lock(void) ; unlock(void) ];
sched:
  s3:[s2];
inter-control:
  s3;
public:
  void lock(void)  { };
  void unlock(void) { };
}
Arena lb-buf: public buffer, Lock {
sched:
  s4: [ s1 + s3 ];
inter-control:
  s4;
lb-buf(int size) : buffer(int size) { }
}

Figure 4. Adaptive Arena Solution for the State
Modification Anomaly
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Arena Service_A {
public:
  Service_A(void);
  void Medium(void);
  void Low(int item) ;
pref:
 s1: [ Medium(void) > Low(int) ];
sched:
 s2: [s1];
inter-control:
 s2;
}

Figure 8. Prioritized Entries in Adaptive Arena

Arena Service_B: public Service_A {
public:
  Service_B(void);
  void High(void);
pref:
  s3: [ High(void)  > s2 ];
sched:
  s4: [s3];
inter-control:
  s4;
}

Figure 9. Extended Prioritized Entries in
the Adaptive Arena

Arena rw {
  int I;
pref:
 s1: [ write(int) > read(void) ];
par:
  par1: [ read(void)# ];
sched:
  s2: [s1];
inter-control:
  s2;
public:
  int read(void);
  void write(int x) ;
};

Figure 5. Reader/Writer Protocol in the Adaptive
Arena Representation

Arena Fair_rw : public rw {
pref:
  s2: [ write(int)  >> read(void) ];
sched:
  s3: [ s2];
inter-control:
  s3;
}

Figure 6. Fair Reader/Writer Protocol in the
Adaptive Arena representation

Arena  adaptive_buffer: public buffer {
pref:
  s2: [ put() > get()];
  s3: [get() > put()];
sched:
  s4: [s2];
  s5: [s3];
inter-control:
  if(noitems > (Maxsize/2)) s4
 else s5;
}

Figure 10. Adaptive Buffer Representation in
 the Adaptive Arena

Arena RW-buffer: public buffer {

pref:
  s2: [ s1 >> ReadNoItems(void) ];
par:
  par1:[ReadNoItems(void)#];
sched:
  s3:[s2];
inter-control:
  s3;
public:
RW_buffer(int size) : buffer(int size) { }
int ReadNoItems(void);
}
int RW_buffer::ReadNoItems(void){

return(noitems) ;
}

Figure 7.  Scheduling Wrappers in  the
Adaptive Arena Representation
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4. Related Work

The separation of the synchronization code from the functional code in the concurrent object-oriented

paradigm has been addressed by many proposals [2, 3, 6, 8, 10, 14, 22, 23, 27, 29], but none of these

proposals has addressed the issue of separation between synchronization  and  scheduling  controls. In

Composition-filters [2],  synchronization constraints can be specified through the use of  filters of class

Wait; reuse of the synchronization code is very restrictive and the specification of different coordination

scenarios is not possible in many cases. Capsules[22] suffers from the inheritance anomaly problem and the

modification of the method bodies to regulate the intra-object concurrency  is a must in many cases. In [8],

the use of negative guards has been employed to promote reuse of the concurrent objects but this approach

offers a very limited degree of code reusability.

Models that are based on the acceptance sets like the one proposed in [28, 29] require a complicated

modification for the inherited sets especially when adding a get2 method. The Adaptive-Arena provides an

elegant simple solution  for the addition of  new methods like  get2 and  gget that have been presented in

[28, 29]. Languages such as POOL-T [3] and ABCL/1[28] support only a single thread of execution within

the concurrent object; concurrent invocations of methods are always serialized.

Arena buffer {
remote:
  put(int *item, int requestSize) :

(requestSize <= (Max - noitems));
  get(int requestSize) :

(requestSize <= noitems);
sched:
  s1: [ put(int *, int)  + get(int) ];
inter-control:
  s1;
intra-control:
  put(int* item, requestSize)

by(requestSize);
 get( requestSize) by(requestSize);
}

Figure 11. Extended-Bounded Buffer in the
 Adaptive Arena
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In DRAGOON[6], synchronization code is defined in a separate class called the behavioral class. One

of the  limitations for DRAGOON[6] approach is  that the behavioral classes can not be extended. Also, the

default evaluation of synchronization counters in DRAGOON[6] may have a negative impact on

performance. Similar semantics to the synchronization counters can be achieved in the Adaptive-Arena

through the use of the scheduling expressions that will be evaluated when needed only.

5. Conclusion

In this paper, we presented a hierarchical approach for concurrent object-oriented programming. Our

approach has been the first to address the issue of the separation between synchronization and scheduling

abstractions and the functionality control of the concurrent objects. These components are specified as first

class entities in our model. Our specification mechanism for these entities minimizes changes that have to

be made in the superclasses. Changes in the behavior of a concurrent object are localized to the

synchronization and scheduling abstractions rather than the method bodies of the sequential code for the

superclass. We explained how synchronization constraints and  scheduling protocols can be specified,

reused, or extended just as data and operations have been extended and reused in the sequential object-

oriented programming models. We also identified the root cause for the inheritance anomaly that may arise

at the synchronization and scheduling levels. We showed that lack of expressive synchronization and

scheduling constructs was the major bottle-neck for the employment of the object-oriented paradigm in the

development of soft-real-time applications.  The synchronization and scheduling abstractions in our model

can be used to engineer adaptability in the development of the reactive/adaptive systems.

The Adaptive-Arena compiler comprising the full set of  the language constructs presented in this paper

is under development. Our future work involves an enhancement of the Adaptive-Arena concurrent object-

oriented programming  model which will facilitate the design and the development of  the  distributed

applications .
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