
-1-

New Age of Software Development:

How Component-Based Software Engineering Changes the Way
of Software Development ?

Mikio Aoyama
Department of Information and Electronics Engineering

Niigata Institute of Technology
1719 Fujihashi, Kashiwazaki 945-11, Japan

Tel: +81-257-22-8129, E-mail: mikio@iee.niit.ac.jp

ABSTRACT
The dawn of a new age of software development is
coming.

Wide spread of the Internet technology and PCs opened
up new market of software as well as new architecture
of software. However, conventional software
development technology could not catch up with the
speed.

Component-Based Software Engineering (CBSE) is an
emerging paradigm of software development. Its goal is
composing applications with plug & play software
components on the frameworks. CBSE is aiming at
realizing long-waited software reuse by changing both
software architecture and software process. It may
vastly change the way we develop software. However,
we still see many problems to solve.

Let’s open up discussions, and take a step toward the
new age of software development.

Keywords
Componentware, Object-Orientation, Reuse,
Framework, Java and Distributed Object

1 INTRODUCTION: CHANGE
Change is a badge of modern corporate. No corporate
can do business without software. Now, change is a
badge of software tribe.

As illustrated in Fig 1, we are witnessing a historical
encounter of change of environment and change of
software and technology.

Widespread use of the personal computers and the
Internet make computers commodity goods. And created
new market and users. This requires substantial change
to software industry. New users, most of them are
consumers, require to drastically reduce the price and/or
cost of software in order to match the ever-decreasing
hardware price. Demands to new applications such as
electronic commerce and groupware are high. However,
conventional methodologies have not achieved such
drastic gain of the productivity and quality yet. We are
requested to fundamentally re-think the way of software
development.

The use of components is the primary source of the
productivity and quality. It is the law of nature in any
matured engineering discipline [Szyp98].

Making applications from software components has
been a dream in software engineering community since
its very early time. As quoted in the literatures, McIlroy
wrote in the NATO conference in 1968 [McIl68]; “My
thesis is that the software industry is weakly founded, in
part because of the absence of a software components
subindustry. … A components industry could be
immensely successful”. However, wide spread reuse of
software components over the industry has not come
true.

Why? A number of obstacles have been identified.
However, it seems clear that the most fundamental
problems are lack of mechanisms to make components
interoperable and lack of “really reusable” components.

Since early 1990’s, so-called Componentware
[Udel94] or Component-Based Software Engineering
(CBSE) have emerged [Aoya96][Brow96][Kiel98]
[Same97][Szyp98]. At the early time, CBSE
emphasized on the EUC (End-User Computing) such as
composing applications on the PCs. However, the use of
COTS (Commercial Off-The-Shelf) software promoted
the CBSE in the development business applications
[Wall98]. Furthermore, quick evolution of the Internet
technology such as Web and Java-based technologies

Fig.1 Change of Environment and Software

Toward New Age of Software Development

Toward New Age of Software Development

Change of
Environmnets

New Applicat ions
e.g. Electronic Commerce
Groupware, Multimedia

New Applicat ions
e.g. Electronic Commerce
Groupware, Multimedia

New Users
From Technical

to Non-Technical Users

New Users
From Technical

to Non-Technical Users

New Software Archit ecture
Web-based, Internet

Distributed Computing

New Software Archit ecture
Web-based, Internet

Distributed Computing

Client sClient sServerServer

AvtiveX
AvtiveX
AvtiveX

CORBA2.0

CORBA2.0

CORBA2.0

JavaJava
Java

WWW
WWW
WWW

Change of Software

New Development Methodologies
Object-Orientation, Architecture

Framework, Componentware

New Development Methodologies
Object-Orientation, Architecture

Framework, Componentware

-2-

even open up new possibilities of CBSE such as
network distribution of components, and the reuse and
interoperation of components over the Internet. Now, a
few set of technologies have been widely deployed and
are still evolving. They include ActiveX/DCOM from
Microsoft [Micr98], CORBA from OMG [OMG98] and
JavaBeans from SUN Microsystems [Thom97].

2 COMPINENT-BASED SOFTWARE ENGINEERING

2.1 What is Software Components

There are a number of definitions on software
components [Same97]. However, in the context of
CBSE, we emphasizes plug & play software
components so that software can be composed with
components like hardware. Thus, software components
are binary units of independent production, acquisition,
and deployment that interact to form a functioning
system [Szyp98].

2.2 What Differentiates CBSE from the
Conventional Reuse

(1) Conventional Software Reuse and CBSE

Although object-oriented technologies have promoted
software reuse, there is a big gap between the whole
systems and classes. To fill the gap, many interesting
ideas have emerged in object-oriented software reuse for
last several years. They include software architecture
[Shaw96], design patterns [Gamm95], and frameworks
[Faya97]. Fig. 2 illustrates layers of such reusable
elements.

(2) CBSE Approach

CBSE takes different approaches from the conventional
software reuse in the following manner.

(1) Plug & Play: Component should be able to plug and
play with other components and/or frameworks so
that component can be composed at run-time without
compilation.

(2) Interface-centric: Component should separate the
interface from the implementation and hide the
implementation details so that they can be composed
without knowing their implementation.

(3) Architecture-centric: Components are designed on a
pre-defined architecture so that they can interoperate
with other components and/or frameworks.

(4) Standardization: Component interface should be
standardized so that they can be manufactured by
multiple vendors and widely reused across the
corporations.

(5) Distribution through Market: Components can be
acquired and improved though competition market,
and provide incentives to the vendors.

3 COMPONENT-BASD SOFTWARE DEVELOPMENT

The nature of CBSE suggest that the model of
component-based software development should be
different from the conventional development model.
Table 1 summarizes major characteristics of
conventional software development and component-
based software development, which are briefly
discussed in the following sections.

Table 1 Comparison of Development Models

Characteristics Conventional CBSE

Architecture Monolithic Modular

Components Implementation

& White-Box

Interface

& Black-Box

Process Big-bang &

Waterfall

Evolutional &

Concurrent

Methodology Build from
Scratch

Composition

Organization Monolithic Specialized:
Component
Vendor, Broker,
& Integrator

3.1 Architectrue
CBSE emphasizes modular architecture so that we can
partially develop a system and incrementally enhance the
functions by adding and/or replacing components. To make
such design possible, we need a sound foundation of
software systems, that is, software architecture. Most
component-based systems assume underlying software
architecture such as MFC (Microsoft Foundation Class)
and CORBA. They are provided in the form of

Fig. 2 Elements of Software Reuse

White BoxWhite BoxWhite Box

Design PatternsDesign PatternsDesign Patterns

FrameworksFrameworksFrameworks

Class LibrariesClass LibrariesClass Libraries

Abstract ClassesAbstract ClassesAbstract Classes

TemplatesTemplatesTemplates

Software
Architectuer

SoftwareSoftware
ArchitectuerArchitectuer

IdiomsIdiomsIdioms

Black BoxBlack BoxBlack Box

 Componentware ComponentwareComponentware

ComponentsComponentsComponents

ComponentsComponentsComponents

Architecture StyleArchitecture StyleArchitecture Style

DesignDesignDesign

SystemSystem

SubsystemSubsystem

SubsystemSubsystem

ClassClass

ClassClass

ClassClass

Levels of
Abstraction

Levels of
Abstraction

Gray BoxGray BoxGray Box

-3-

frameworks. Frameworks are workable reference to the
underlying software architecture.

To be effective, framework can be hierarchical up from
domain independent to domain specific. Examples include
Andersen Consulting’s Eagle project [Ande98] and IBM’s
San Francisco project [IBM98][Laza98]. With standardized
and modular software architecture, the CBSE can avoid ad
hoc and monolithic design as illustrated in Fig. 3
[Mowb97].

3.2 Components
Components can be product-specific, domain-specific or
domain-independent as illustrated in Fig. 4.

3.3 Process
CBSE makes software development and delivery be
evolutional. Since some parts of a system can be
acquired from the component vendors and/or be
outsourced to other organizations, some parts of
software process can be done concurrently.

(1) Architecture of Software Process

To make software reuse happen, software process
should be reuse-oriented so that designers can reuse
artifacts at different levels of abstraction along with
software process. Fig. 5 illustrates conventional water-
fall process and an example of CBSE process.

CBSE process consists of two processes; component
development and component integration. Since these

two processes can be done by different organizations,
these two process can be concurrent.

Unlike conventional process, CBSE process need a new
process for component acquisition.

3.4 Methodology
Fig. 6 illustrates an overview of development
methodologies of CBSE. As illustrated, methodologies
need to deal with both component development and
component composition.

Most of conventional methodologies such as object-
oriented methodology assume development from scratch
and have not provided much help for reuse-oriented
development. Furthermore, plug & play software
components separated interface from the
implementation and provide interface

CBSE focuses on composition of components through their
interface. Composition also requires to design collaborative
behavior of multiple components. So, CBSE
methodologies need to help interface-centric and behavior-
oriented design such as Catalysis [DSou98] and
connection-oriented programming [Szyp98].

3.5 Organization
The separation of component development and

Fig. 3 Architecture-Based Design

Fig. 4 Layers of Components

Fig. 5 Conventional Process and CBSE Process

Fig. 6 CBSE Development Methodologies

CORBA Software Bus Architecture

Well-defined and Well-defined and
Modular Distributed ArchitectureModular Distributed Architecture

ORB(Object Request Broker)ORB(Object Request Broker)

CORBA ServicesCORBA Services

 App
Objects

 App
Objects

Domain
Objects

Domain
Objects

CORBA
 Facilities

CORBA
 Facilities

Add Hoc and
Monolithic

Architecture

Domain-Independent Components
Components Reusable across Domains

Example: CORBA Facility Objetcs

Domain-Independent Components
Components Reusable across Domains

Example: CORBA Facility Objetcs

Domain-Specific Components
Components Specific to Application Domain or

Matching to DSSA(Domain-Specific Software Architecture)
Examples: CORBA Domain Objects,

ActiveX Vertical Components
(OLE POS, ActiveStore)

Domain-Specific Components
Components Specific to Application Domain or

Matching to DSSA(Domain-Specific Software Architecture)
Examples: CORBA Domain Objects,

ActiveX Vertical Components
(OLE POS, ActiveStore)

Product
Line

Product
LineProduct LineProduct LineProduct Line

AAA AxAxAx
AyAyAy AzAzAz

DomainDomainDomain

DomainDomainDomain

ProductProduct

Components Specific to
Product/Product-Line

Components Specific to
Product/Product-Line

ProductProduct

 Analysis Analysis

 Design Design

 Implement.Implement.

 Unit Test Unit Test

 IntegInteg. Test . Test

System TestSystem Test

Component-Oriented DesignComponent-OrientedComponent-Oriented DesignDesign

 Compoent Composition CompoentCompoent Composition Composition

 IntegInteg. Test . Test

System TestSystem Test

 Analysis Analysis Component AcquisitionComponent AcquisitionComponent Acquisition

ConventionalConvent ional
Process ModelProcess Model

Component -BasedComponent -Based
Enterprise Software Process ModelEnterprise Software Process Model

Domain Analysis
Modeling

Domain AnalysisDomain Analysis
ModelingModeling

Component Design
and Implementation
Component DesignComponent Design
and Implementationand Implementation

Component-Based
Design Methodology
Component-BasedComponent-Based

Design MethodologyDesign Methodology

Component
Composition
Component Component
CompositionComposition

Component/
Application

Development Support

Component/Component/
ApplicationApplication

Development SupportDevelopment Support

Domain
Components

DomainDomain
ComponentsComponents

ComponentComponent
WarehouseWarehouse
and Brokerand Broker

Application
Systems

ApplicationApplication
SystemsSystems

Application
Domains

ApplicationApplication
DomainsDomains

Applications
i Requirements j

ApplicationsApplications
ii RequirementsRequirements jj

Component DevelopmentComponent Development
Applicat ion DevelopmentApplicat ion Development
(Component Composit ion)(Component Composit ion)

Component DistributionComponent DistributionComponent Distribution Network InteroperabilityNetwork InteroperabilityNetwork Interoperability

-4-

component integration created a new role of component
broker. Component broker can sell and distribute
software components.

Since component development and component
integration requires different expertise, it is natural to
specialize the organizations into component vendors and
component integrators. This specialization will requires
the mediators between two organizations, that is,
component brokers. This organization structure,
illustrated in Fig. 7, can be called vendor-broker-
integrator model [Ning97].

As the software component vendors have been growing,
a software component market is emerging. Since
software can be distributed over the Internet, web-based
software component brokers have emerged [Aoya98a].

4 EARLY EXPERIENCE

We have observed a number of component-based
software development. As an example, Fig. 8 shows the
size of code written and effort of two pilot projects of
component-based software development conducted in a
Japanese software company [Aoya97][Aoya98b]. As the
size of code drastically is reduced, so the required work
load is.

Fig 9 shows the workload distribution along with
software process. Data of case 1 and 2 are collected
from the pilot projects above mentioned. For the

reference, an estimation based on COCOMO is also
illustrated. Although the number of data is small, the
following characteristics of component-based software
development are revealed:

1) CBSE requires a new process that is component
acquisition, and

2) The workload for testing is drastically reduced.

Besides these cases, a number of component-based
software development have been conducted.

5 VISION TO A NEW AGE OF SOFTWARE
DEVELOPMENT WITH CBSE

With CBSE, we can change the way of software
development as illustrated in Fig. 10. As suggested,
software development should be with modular process,
modular architecture and specialized organization so
that we can accumulate our technology and expertise.

How we can make CBSE happen ?

As above mentioned, CBSE can be a fundamental
technology for software development so that it requires
to re-think various aspects of software development.
Besides technical issues, non technical issues such as
commerce of components and management issues are
also important.

Fig. 9 Case Study: Workload Distribution

Fig. 7 Vendor-Broker-Integrator Model

Fig. 8 Case Study: Size and Effort

Fig. 10 Vision to New Age Software Development

Inter/IntranetInter/Intranet

Component IntegratorComponent Integrator
(Applications Vendor)(Applications Vendor)

ComponentComponent
VendorVendor

Software ComponentSoftware Component
BrokerBroker

End UserEnd User

Collection ofCollection of
Component InformationComponent Information

through the Internetthrough the Internet
ComponentComponent
WarehouseWarehouse

Description of Component
Information on the Web

Description of ComponentDescription of Component
Information on the WebInformation on the Web

Search, Trial-Use, Purchase and
Distribution of Components

over the Internet

Search, Trial-Use, Purchase andSearch, Trial-Use, Purchase and
Distribution of ComponentsDistribution of Components

over the Internetover the Internet

Monolithic
Process

AnalAnal DesiDesi ImplImpl TestTest

Rel. 3Rel. 3

Rel. 2Rel. 2

Rel. 1Rel. 1

AnalAnal
DesiDesi

ImplImpl
TestTest

Incremental/
Concurrent Development

Incremental Delivery

Monolithic
Architecture

FrameworkFramework

Design
Patterns

Design
Patterns

ComponentsComponents

Rel.2, Rel. 3

Modular Distributed Architecture

Internet/
 Intranet

Internet/
 Intranet

IntegratorIntegrator

ArchitectArchitect

Component
Vendor

Component
Vendor

BrokerBroker

Specialized Organizat ion

Monolithic
 Organization

C
Lang

CBSE
0

1

2

3

4

5

6

7

8

C
Lang

CBSE

Size
Effort

[[KLOC]KLOC]

[[MM]MM]

C
Lang

CBSE
0

0.5

1

1.5

2

2.5

3

3.5

4

C
Lang

CBSE

Size
Effort

[[KLOC]KLOC]

[[MM]MM]

Case 1Case 1 Case 2Case 2

Plan/
Analysis

Compo.
Acq.

Compo.
Design

Composit-
ion/Coding

Test
0

10

20

30

40

50

60

Plan/
Analysis

Compo.
Acq.

Compo.
Design

Composit-
ion/Coding

Test

COCOMO
Case 1
Case 2
Case 3

[%][%]

-5-

To make our dreams come true,. new technology and
professional will be needed.

REFERENCES
[Ande98] http://www.ac.com/aboutus/tech/eagle.

[Aoya96] M. Aoyama, Componentware: Building
Applications with Software Components, J. of IPSJ,
Vol. 37, No. 1, Jan. 1996, pp. 71-79 (In Japanese).

[Aoya97] M. Aoyama, Process and Economic Model of
Component-Based Software Development, Proc. 5th
IEEE SAST (Symp. on Assessment of Software Tools),
Jun. 1997, pp. 100-103.

[Aoya98a] M. Aoyama, et al., An Architecture of
Software Commerce Broker over the Internet, Proc.
WWCA (Worldwide Computing and Its Applications)
’98, LNCS Vol. 1368, Springer-Verlag, Mar. 1998, pp.
97-107.

[Aoya98b] M. Aoyama, et al. (ed.), Componentware,
Kyoritsu Shuppan, 1998 (In Japanese).

[Brow96] A. W. Brown, Component-Based Software
Engineering, IEEE CS Press, 1996.

[DSou98] D. F. D’Souza and A. C. Wills, Objects,
Components and Frameworks with UML: The Catalysis
Approach, Addison Wesley, 1998 (http://www.iconcomp.com).

[Faya97] M. E. Fayad and D. C. Schmidt (ed.), Object-
Oriented Application Frameworks, CACM, Vol. 40, No.
10, Oct. 1997.

[Gamm95] E. Gamma, et., Design Patterns, Addison-
Wesley, 1995.

[IBM98] http://www.ibm.com/Java/Sanfrancisco/.

[Kiel98] D. Kiely, Are Components the Future of
Software?, IEEE Computer, Vol. 31, No. 2, Feb. 1998,
pp. 10-11.

[Laza98] B. Lazar, IBM’s San Francisco Project,
Software Development, Vol. 6, No. 2, Feb. 1998, pp. 40-
46.

[McIl68] M. D. McIlroy, Mass-Produced Software
Components, Software Engineering Concepts and
Techniques (1968 NATO Conference on Software
Engineering), Van Nostrand Reinhold, 1976, pp. 88-98.

[Micr98] http://www.microsoft.com/activex/.

[Mowb97] T. J. Mowbray and W. A. Ruh, Inside
CORBA, Addison-Wesley, 1997.

[Ning97] J. Ning, A Component-Based Software
Development Model, Proc. COMPSAC ’96, Aug. 1996, pp.
389-394.

[OMG98] http://www.omg.org.

[Same97] J. Sametinger, Software Engineering with

Reusable Components, Springer-Verlag, 1997.

[Shaw96]M. Shaw and D. Garlan, Software
Architecture, Prentice Hall, 1996.

[Szyp98] C. Szyperski, Component Software, Addison-
Wesley, 1998.

[Thom97] A. Thomas, Enterprise JavaBeans: Server
Component Model for Java, White Paper, Dec. 1997,
http://www.javasoft.com/products/ejb/.

[Udel94] J. Udell, ComponentWare, BYTE, Vol. 19, No.
5, May 1994, pp. 46-56.

[Wall98] K. Wallnau and D. Carney, COTS Products
and Technology Evaluation: Concepts and Pragmatics,
ICSE ’98 Tutorial, Apr. 1998.

