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ABSTRACT
The dawn of a new age of software development is
coming.

Wide spread of the Internet technology and PCs opened
up new market of software as well as new architecture
of software. However, conventional software
development technology could not catch up with the
speed.

Component-Based Software Engineering (CBSE) is an
emerging paradigm of software development. Its goal is
composing applications with plug & play software
components on the frameworks. CBSE is aiming at
realizing long-waited software reuse by changing both
software architecture and software process. It may
vastly change the way we develop software. However,
we still see many problems to solve.

Let’s open up discussions, and take a step toward the
new age of software development.
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1 INTRODUCTION: CHANGE
Change is a badge of modern corporate. No corporate
can do business without software. Now, change is a
badge of software tribe.

As illustrated in Fig 1, we are witnessing a historical
encounter of change of environment and change of
software and technology.

Widespread use of the personal computers and the
Internet make computers commodity goods. And created
new market and users. This requires substantial change
to software industry. New users, most of them are
consumers, require to drastically reduce the price and/or
cost of software in order to match the ever-decreasing
hardware price. Demands to new applications such as
electronic commerce and groupware are high. However,
conventional methodologies have not achieved such
drastic gain of the productivity and quality yet. We are
requested to fundamentally re-think the way of software
development.

The use of components is the primary source of the
productivity and quality. It is the law of nature in any
matured engineering discipline [Szyp98].

Making applications from software components has
been a dream in software engineering community since
its very early time. As quoted in the literatures, McIlroy
wrote in the NATO conference in 1968 [McIl68]; “My
thesis is that the software industry is weakly founded, in
part because of the absence of a software components
subindustry. … A components industry could be
immensely successful”. However, wide spread reuse of
software components over the industry has not come
true.

Why? A number of obstacles have been identified.
However, it seems clear that the most fundamental
problems are lack of mechanisms to make components
interoperable and lack of “really reusable” components.

Since early 1990’s, so-called Componentware
[Udel94] or Component-Based Software Engineering
(CBSE) have emerged [Aoya96][Brow96][Kiel98]
[Same97][Szyp98]. At the early time, CBSE
emphasized on the EUC (End-User Computing) such as
composing applications on the PCs. However, the use of
COTS (Commercial Off-The-Shelf) software promoted
the CBSE in the development business applications
[Wall98]. Furthermore, quick evolution of the Internet
technology such as Web and Java-based technologies
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even open up new possibilities of CBSE such as
network distribution of components, and the reuse and
interoperation of components over the Internet. Now, a
few set of technologies have been widely deployed and
are still evolving. They include ActiveX/DCOM from
Microsoft [Micr98], CORBA from OMG [OMG98] and
JavaBeans from SUN Microsystems [Thom97].

2 COMPINENT-BASED SOFTWARE ENGINEERING

2.1 What is Software Components

There are a number of definitions on software
components [Same97]. However, in the context of
CBSE, we emphasizes plug & play software
components so that software can be composed with
components like hardware. Thus, software components
are binary units of independent production, acquisition,
and deployment that interact to form a functioning
system [Szyp98].

2.2 What Differentiates CBSE from the
Conventional Reuse

(1) Conventional Software Reuse and CBSE

Although object-oriented technologies have promoted
software reuse, there is a big gap between the whole
systems and classes. To fill the gap, many interesting
ideas have emerged in object-oriented software reuse for
last several years. They include software architecture
[Shaw96], design patterns [Gamm95], and frameworks
[Faya97]. Fig. 2 illustrates layers of such reusable
elements.

(2) CBSE Approach

CBSE takes different approaches from the conventional
software reuse in the following manner.

(1) Plug & Play: Component should be able to plug and
play with other components and/or frameworks so
that component can be composed at run-time without
compilation.

(2) Interface-centric: Component should separate the
interface from the implementation and hide the
implementation details so that they can be composed
without knowing their implementation.

(3) Architecture-centric: Components are designed on a
pre-defined architecture so that they can interoperate
with other components and/or frameworks.

(4) Standardization: Component interface should be
standardized so that they can be manufactured by
multiple vendors and widely reused across the
corporations.

(5) Distribution through Market: Components can be
acquired and improved though competition market,
and provide incentives to the vendors.

3 COMPONENT-BASD SOFTWARE DEVELOPMENT

The nature of CBSE suggest that the model of
component-based software development should be
different from the conventional development model.
Table 1 summarizes major characteristics of
conventional software development and component-
based software development, which are briefly
discussed in the following sections.

Table 1  Comparison of Development Models

Characteristics Conventional CBSE

Architecture Monolithic Modular

Components Implementation

& White-Box

Interface

& Black-Box

Process Big-bang &

Waterfall

Evolutional &

Concurrent

Methodology Build from
Scratch

Composition

Organization Monolithic Specialized:
Component
Vendor, Broker,
& Integrator

3.1 Architectrue
CBSE emphasizes modular architecture so that we can
partially develop a system and incrementally enhance the
functions by adding and/or replacing components. To make
such design possible, we need a sound foundation of
software systems, that is, software architecture. Most
component-based systems assume underlying software
architecture such as MFC (Microsoft Foundation Class)
and CORBA. They are provided in the form of

Fig. 2  Elements of Software Reuse
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frameworks. Frameworks are workable reference to the
underlying software architecture.

To be effective, framework can be hierarchical up from
domain independent to domain specific. Examples include
Andersen Consulting’s Eagle project [Ande98] and IBM’s
San Francisco project [IBM98][Laza98]. With standardized
and modular software architecture, the CBSE can avoid ad
hoc and monolithic design as illustrated in Fig. 3
[Mowb97].

3.2 Components
Components can be product-specific, domain-specific or
domain-independent as illustrated in Fig. 4.

3.3 Process
CBSE makes software development and delivery be
evolutional. Since some parts of a system can be
acquired from the component vendors and/or be
outsourced to other organizations, some parts of
software process can be done concurrently.

(1) Architecture of Software Process

To make software reuse happen, software process
should be reuse-oriented so that designers can reuse
artifacts at different levels of abstraction along with
software process. Fig. 5 illustrates conventional water-
fall process and an example of CBSE process.

CBSE process consists of two processes; component
development and component integration. Since these

two processes can be done by different organizations,
these two process can be concurrent.

Unlike conventional process, CBSE process need a new
process for component acquisition.

3.4 Methodology
Fig. 6 illustrates an overview of development
methodologies of CBSE. As illustrated, methodologies
need to deal with both component development and
component composition.

Most of conventional methodologies such as object-
oriented methodology assume development from scratch
and have not provided much help for reuse-oriented
development. Furthermore, plug & play software
components separated interface from the
implementation and provide interface

CBSE focuses on composition of components through their
interface. Composition also requires to design collaborative
behavior of multiple components. So, CBSE
methodologies need to help interface-centric and behavior-
oriented design such as Catalysis [DSou98] and
connection-oriented programming [Szyp98].

3.5 Organization
The separation of component development and

Fig. 3  Architecture-Based Design
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component integration created a new role of component
broker. Component broker can sell and distribute
software components.

Since component development and component
integration requires different expertise, it is natural to
specialize the organizations into component vendors and
component integrators. This specialization will requires
the mediators between two organizations, that is,
component brokers. This organization structure,
illustrated in Fig. 7, can be called vendor-broker-
integrator model [Ning97].

As the software component vendors have been growing,
a software component market is emerging. Since
software can be distributed over the Internet, web-based
software component brokers have emerged [Aoya98a].

4 EARLY EXPERIENCE

We have observed a number of component-based
software development. As an example, Fig. 8 shows the
size of code written and effort of two pilot projects of
component-based software development conducted in a
Japanese software company [Aoya97][Aoya98b]. As the
size of code drastically is reduced, so the required work
load is.

Fig 9 shows the workload distribution along with
software process. Data of case 1 and 2 are collected
from the pilot projects above mentioned. For the

reference, an estimation based on COCOMO is also
illustrated. Although the number of data is small, the
following characteristics of component-based software
development are revealed:

1) CBSE requires a new process that is component
acquisition, and

2) The workload for testing is drastically reduced.

Besides these cases, a number of component-based
software development have been conducted.

5 VISION TO A NEW AGE OF SOFTWARE
DEVELOPMENT WITH CBSE

With CBSE, we can change the way of software
development as illustrated in Fig. 10. As suggested,
software development should be with modular process,
modular architecture and specialized organization so
that we can accumulate our technology and expertise.

How we can make CBSE happen ?

As above mentioned, CBSE can be a fundamental
technology for software development so that it requires
to re-think various aspects of software development.
Besides technical issues, non technical issues such as
commerce of components and management issues are
also important.

Fig. 9  Case Study: Workload Distribution

Fig. 7  Vendor-Broker-Integrator Model

Fig. 8  Case Study: Size and Effort
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To make our dreams come true,. new technology and
professional will be needed.
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