
Concepts For Developing Component-based Systems

R. Schmidt, U. Assmann
Forschungszentrum Informatik (FZI) and Universität Karlsruhe
 email: rschmidt@fzi.de, assmann@ipd.info.uni-karlsruhe.de

The problem
Increasing the productivity of software system development and augmenting the flexibility of software
systems to react to business process changes has become a dominant concern for companies
competing in the global marketplace. Taking their clues from traditional production techniques, IT
systems should be constructed from prefabricated, easily marketable components that can be widely
reused. An example of such a product is the ubiquitous screw, which is used in a large number of
contexts. This is possible, because the screw has a certain amount of context-independence. Context
independence means that a component is easily transferable from its development context (the screw
factory) to a wide variety of application contexts (cars, ships, planes) and it can be easily replaced by
other components with similar functionalities but different or better qualities (by a screw from
stainless steel). Following, this example, software-units should be context-independent in order to
build and evolve component-oriented systems [CiSc96], [Schm97]. And indeed, modern software
architectures based on ActiveX/DCOM [Chap96], CORBA [OMG] or Java Beans [Beans] do support
the development of systems from independently developed software units (components). However,
there is no widely-accepted method for identifying the components and how to compose them to
applications.

Components- and component-based frameworks
The concepts “component” and “component-based framework” which can be found in technologies
like Enterprise Java Beans [Beans], ActiveX/DCOM [Chap96] should not be confused with the
components and connectors found in architecture definition languages [Medv97], which are mentioned
later. Component-based frameworks such as ActiveX/DCOM aim at enabling the cooperation of
independently developed software-units, called components, across computer and network boundaries.
Architecture definition languages [Med97] and architectural styles are description models and aim at
the structural description of software systems. They try to give a more abstract view of software
systems than object-oriented methods do, for example, [GaSh93] and allow analyses with broader
view.

Component-based frameworks not only support the cooperation of components across computer and
network boundaries, they also enable the independent evolution of the components: Components can
be easily replaced by other components, offering new or enhanced functionality. Furthermore,
component-based frameworks provide services for the integration of databases, file systems etc.
JavaBeans Enterprise [Beans], for example, allows the remote interoperation of beans over Remote
Method Invocation (RMI). The Java Database Connection (JDBC) provides the integration of
relational databases. Other services which can be used from JavaBeans Enterprise are – for example -
the Java Transaction Service (JTS), the Java Naming and Directory Interface (JNDI), the Java
Message Services (JMAPI) etc.

Two concepts support the evolution in component-based frameworks: The first concept is that of
strong interfaces in the components. They completely hide the implementation and the implementation
model of the component (In ActiveX/DCOM for example, interfaces are defined at the binary level,
although more comfortable language adaptations exist). Therefore, a component can be replaced by
another one, as long as the same interface is supported. The second concept is implicit interface
invocation. In a component-based framework, the component supporting an interface is never directly

addressed. Directly addressing the component would imply that the user of the component has to know
the identity and the location of a component. Therefore, the user of a component only specifies the
interface required and the component-based framework returns a reference to a component providing
the interface. This reference may be a component but also an representative, such as a proxy. The user
of the component, however, does not see any difference. The information about the interfaces and the
location of a component implements is stored in a registry or repository and not in the components
themselves. An application built from components differs from applications built with conventional
programming. The components do not address one another directly, but address each other using the
indirection mechanisms described above. Therefore, it is possible to exchange components flexibly
and even to relocate them to another computer using implicit invocation. The components composing
the application, may not form a single executable, but can be distributed across different computers.

Because the implementation details of a component are inaccessible for the user, there have to be
mechanisms to provide information about the component’s specification. The same is necessary for
the adaptation of a component to individual requirements which must be possible without knowing
about its implementation. To achieve this goal, components offer two mechanisms, introspection and
specialization. Introspection allows one to gain knowledge about the component’s interfaces without
knowing its implementation. For example, Java Beans provides two mechanisms for introspection,
reflection and the BeanInfo class. Reflection allows to know about all methods of a component without
further programming. The BeanInfo class gives complex information about a Bean component, but has
to be implemented explicitly. Specialization allows a component to be changed without access to its
implementation. Specialization in Java Beans is supported by property sheets and customizers.
Property sheets offer a simple specialization mechanism which sets the parameters of the Bean.
Complex specializations can be done by customizers. Both introspection and specialization are used
by the component weaver to combine the aspect implementations. The introspection mechanisms give
the component weaver information about the connection points of the component, that means, how
other component implementations can be connected to the component. The specialization mechanisms
are used to connect one component to another component.

Designing component-based systems
At first glance, one would expect object-oriented architectures to meet the needs of component-
oriented architectures. After all, the properties of components and those of objects appear to be quite
similar. If this were indeed so, one could employ a wealth of established methods and techniques for
component-based architectures. However there are some methodical weaknesses of object-orientation,
which become obvious in large systems of independent evolving components. One example is the
representation of interaction protocols. They are not independent entities separate from the objects, but
dispersed amongst all objects participating in the interaction [LoWa95]. Therefore changes to the
interaction protocols often require changes to several objects and hamper system evolution. Keeping
such changes consistent is a further problem [AWBB93]. The overall control flow can only be
comprised of the combined control flows of individual objects. Furthermore, such objects with an
embedded part of an interaction protocol can only be reused in a new context, if the same interaction
protocol is used by the other objects. An example of the inadequacies of object-oriented methods is
found in the implementation of business processes. Object-oriented methods intermix single
operations with the global control flow responsible for the sequence of the operations. Neither is it
easy to reuse objects in other business processes, because they also contain a part of the global control
flow; nor is it easy to change the global control flow, because it is embedded in a multitude of objects.

In response, several attempts have been made to fix these deficiencies. Alliances [LoWa95] separate
interaction protocols from the objects. Composition filters [AWBB93] realize interaction protocols by
filtering the messages sent between the objects and by providing support for error detection and
synchronization. Architecture definition languages [Med97] describe software systems as combination
of components, which provide the basic functionality, and connectors, which describe the relationships
of the components, architecture definition languages attempt to give a conceptual description of the
system. By this means, it is possible to separate a application context-independent core functionality

represented by components, from context dependent functionality represented by connectors. For
example, connectors can be used to separately model interactions, such as events, pipes etc [GaSh93].

The aforementioned weaknesses of object-orientation are symptomatic of a much broader problem, the
“tangling of aspects” as described in [KILL97], [Kicz96]. Embedding the interaction protocols into
objects can be seen as the mixing of the interaction aspect with other aspects, such as the operational
one. Changes to one aspect causes also many side-effects to the implementation of other aspects.
Therefore, the concept of Aspect-oriented Programming [KILL97] proposes to separately specify and
implement the different aspects of an application and combine the implementation through an so-
called aspect weaver. Aspect-oriented Programming goes beyond untangling the interaction protocols
from the objects and extends the idea to other aspects, such as error handling, distribution, etc., which
usually are also intermixed when using traditional object-oriented methods.

Position
Our thesis is that application development for component-oriented systems should start with an aspect-
separated model. Ideally components should implement only functionality belonging to one aspect of
an application, and applications should be composed of aspect-separated components. By applying the
concept of aspect-oriented programming there is a much better chance that components become truly
reusable, because they have to fulfill only the requirements of one aspect and not a combination of
several ones. Component-oriented systems built in an aspect-separated manner can then be expected to
become more flexible and evolution-transparent, because changes which concern only one aspect, only
influence implementations of one aspect. To combine the components, the aspect weaver [KILL97]
should be adapted for combining components in form of a component-weaver.

We argue that the decomposition of the problem domain into aspects, as proposed by [Berg97] will
play an important role in applying the idea of aspect-oriented programming to component-oriented
systems. Aspect-oriented programming should be combined with aspect-separated domain models,
such as workflow-models [Jabl95]. Applying the separation of aspects found in workflow-
management-systems will provide clues as to how constitute components which could then be utilized
in a multitude of business processes. On the other hand, workflow-management systems may profit
from component-oriented systems. Our goal is to fuse component-oriented systems and aspect-
oriented programming paying special consideration of domain-specific aspect-oriented models such as
workflow models, in order to obtain the best of both worlds.

References
[AsSc97] U. Aßmann, R. Schmidt: Towards a Model For Composed Extensible Components.

Workshop Foundations of Component-Based Systems, Proceedings, Zurich, Switzerland
September 26, 1997

[AWBB93] M. Aksit. , K. Wakita, J. Bosch , L. Bergmans and A. Yonezawa : Abstracting Object
Interactions Using Composition Filters. In Object-Based Distributed Programming, R.
Guerraoui, O. Nierstrasz and M. Riveill (eds.), LNCS 791, Springer Verlag 1993

[Berg97] L. Bergmans: Aspects of AOP: Scalability and application to domain modelling. TRESE
project, University of Twente & STEX.
http://www.parc.xerox.com/spl/projects/aop/aop-meeting-
pps/bergmans.html

[Beans] Javasoft: Java Beans Specification 1.0 A. http://splash.javasoft.com/beans/-
beans.100A.pdf

[Chap96] D. Chappell: Understanding ActiveX and OLE. Microsoft Press. Redmond 1996

[CiSc96] O. Ciupke, R. Schmidt: Components As Context-Independent Units of Software. WCOP
96, Linz 1996. Special Issues in Object-Oriented Programming. Workshop Reader of the
10th European Conference on Object-Oriented Programming ECOOP96. Dpunkt.verlag,
Verlag 1996

 [Jabl95] Jablonski, S.: Workflow-Management-Systeme. International Thomson Computer Press.
Bonn 1995

[Kicz96] G. Kiczales: Aspect-oriented programming. ACM Computing Surveys, 28(4), Dec. 1996.
[KILL97] G. Kiczales, J. Irwin, J. Lamping, J.M. Loingtier, C. V. Lopes, C. Maeda, a. Mendhekar:

Aspect-Oriented Programming. Position Paper from the Xerox Parc Aspect-Oriented
Programming Project.

[LoWa95] P.C. Lockemann, H. D. Walter: Object-Oriented Protocol Hierarchies for Distributed
Workflow Systems. In [PaTo95].

[OMG] http://www.omg.org
[PaTo95] R. Pareschi, M. Tokoro: TAPOS Theory And Practice of Object Systems. John Wiley,

New York. Volume 1(1) SPECIAL ISSUE: 1995 European Conference of Object Oriented
Programming

[ScAs98] R. Schmidt, U. Assmann: Compflow. ACM Symposium on Coordination languages.
Atlanta 28.2.98.

[Schm97] R. Schmidt: Component-based systems, composite applications and workflow-
management. Workshop Foundations of Component-Based Systems, Proceedings,
Zurich, Switzerland
September 26, 1997

[WfMC] Workflow Management Coalition: http://www.aiai.ed.ac.uk/project/wfmc/

	The problem
	Components- and component-based frameworks
	Designing component-based systems
	Position
	References

