
A Generative Approach To Componentware

Marcelo Sant’Anna Julio Cesar Sampaio do Prado Leite Antonio Francisco do Prado

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro

R. Marquês de S. Vicente, 225.
Rio de Janeiro 22453-900

e-mail: {santanna, julio}@inf.puc-rio.br

Departamento de Computação
Universidade Federal de São Carlos

Av. Washington Luiz, 235
04499-610 São Paulo, Brazil

prado@dc.ufscar.br

Abstract

Componentware practice faces several problems to
handle the evolutionary aspects of software. We focus on
four major problems in the area and propose the use of
domain-oriented generic software generators as one
possible solution. Motivated by the Draco-PUC project,
this proposal defines an agenda for improving the Draco-
PUC component model and for making it interoperable
with CORBA.
Keywords: Component-based software construction,
Software Generators, Software Evolution, Draco
Paradigm, Software Architectures and Transformation
Systems.

1 Introduction

Component-based software construction has been
proposed for some time [23], but just in the last five years it
has become available to a larger amount of people around
the world. This unprecedent growth of the reuse culture can
be observed by the large sales of popular rapid-application-
development (RAD) [9] tools, as well as by the crescent
availability of components [34]. Added to the scene, the
Internet/Intranet marketing has provided a fast growth in the
interconnection of computers, inside and outside
companies, creating a large demand for distribute
interoperable applications [7], raising the complexity of
software systems [31].

Learning from experience, software engineers are
concerned with the difficulty of software evolution and its
impacts on the costs od software engineering projects [21].
In this proposal we point out how software evolution
problems are manifasted on current and near-future
componentware and we also present possible paths towards
handling these problems.

2 Componentware Today

The main actors in popular componentware scene
today are OCX controls, Java classes and some OO toolkits.

Also, Design Patterns [15], OO frameworks and template-
based libraries, such as the Standard Template Library
(STL) [24] are starting to play some minor roles in the field.
Client/Server computing is extensivily sold as the natural
scenario for these actors to perform their roles [10], where
CORBA [33] and CORBA-like standards seem to be of
increasing importance.

Studying the problem of software evolution on today’s
componentware, we understand that, in addition to the
intrinsic problems of software evolution, there are specific
factors which restrain the delivery of better results to the
software development process.

As a basic premise to our research, we believe that
these problems are mostly due to:

• The high-impedance among components
• The inflationary aspects of implementation-level

encapsulation and aggregation
• The very narrow window of opportunity for systems

optimization
• The lack of scalability for component libraries

2.2 High Software Impedance among Components

When an application is being built from components it
is necessary to tie together several kinds of software
components to fulfill the feature requirements. Components
can either be easilly combined or may need extra glue in
order to work together. The later case is extremely frequent
in modern distributed applications and sometimes a rather
complex plumbery is needed to make things work in an
interoperable way. The harder it is to put components
together, the higher is the impedance among them. The
higher the impedance, the larger the number of glue-
components we have to use. Several researchers have
pointed to this specific kind of problem [26] [29] [1].

2.3 Inflationary Aspects of Implementation-level
Encapsulation and Aggregation

As software spreads out to almost all activities in our
daily lives, the intrinsic complexity of software systems
tends to grow faster [31]. If we have plug-compatible
components that can be connected in a tinkertoy-like
manner to fulfill this crescent demand, it is natural that
software-Frankensteins (poorly-composed software) come
to life. We believe this is the result of unsing the concepts
of aggregation an d encapsulation athe implementation level
only. An immediate consequence is that, once a component
is added to an application it will always be part of its
implementation. As soon as aggregation provides a
horizontal growth to our perception of the application, we
use abstraction to hide details in a vertical dimension. The
negative aspect of current practice is the application of this
approach at the implementation level, when software
systems end up carrying forever a great amount of useless
lines of code, generating larger and more inefficient
systems. In this case we have kind of a snowball effect
applied to software systems. As a consequence
maintanability becomes more problematic.

2.3 Narrow Opportunities for Optimization

The lack of opportunities for making optimizations and
maintenance as software systems grow in size is
characteristic of current practice component-based software
construction tools. Anyone attempting to maintain a large
system, using any of currently popular RAD tools, know
how tough this job is. Being focused on the implementation
level, these tools are not able to apply domain-specific
optimizations. If one desires to improve the design,
maintenance will take place at the code level, severely
impacting the software evolution process. Neighbors and
Baxter provide very good insights about this fact [25] [26]
[5]. A notable evidence for this is the proliferation of
resource-hungry unoptimized software (sometimes called
fatware).

2.4 Library Scaling Problem

As noted by researchers such as Ted Biggerstaff [8]
and Don Batory [3], current component-based software
practice for component libraries present an inherited
difficulty to scale up. More precisely, following Biggerstaff
[8], “the library scaling problem resides in the difficulty in
scaling reuse libraries in both component sizes and feature
variations”. Anyone wanting to support a large set of
features in a component library, must also handle the
managerial aspects of having to deal with a large library,
when it does not become unpractical to build such a large
library. Since libraries can either be domain-specific or
generic, there are two orthogonal dimensions of growth,
where portability among different platforms and diversity of
features are driving factors.

3 Searching for a Better Componentware
Practice
We have, so far, pointed out current problems of

componentware practice without giving proper recognition
of its importance to software reuse. We believe that current
practice is slowly preparing practitioners for more
sophisticated software engineering approaches. Our
research focus exactly on this window of opportunity.

In order to tackle the afore mentioned problems, our
work is focused primarily on the use of domain-oriented
generic software generators which, we believe, can support
the evolutionary aspects of software.

Several researchers have proposed generic software
generators (GSG), but none of them, except Neighbors in
[28], has firmly worked out an example of a domain-
oriented GSG. In fact, it was Neighbors who forged, for the
software engineering community, the now wide-spread term
Domain Analysis [25]. Good work on the problems of
constructing software generators is reported by Ornburn in
[30]. Feather [12], Partsch [32], Fickas [13] and Baxter [5]
have managed to compare several different approaches,
aiding the field of GSGs. A large european experiment on
the area, Prospectra, is reported in [17]. As far as we know,
only Kestrel Institute [18], through Reasoning Systems [22],
really succeeded to transfer its technology to industry in
order to produce a commercial working GSG. Current work
in the area can be found in [19], [4], [14], and [20]. Some
insights on the way that software generators can aid
software engineering in the following years can be found in
[6], [26] and [7].

3.1 Our Understanding of Generative

A generative approach to software assumes that it is
possible to describe generic (abstract) architecture for
software so they can be further, automatically or semi-
automatically, composed in order to produce working
(concrete) software through generative tools. This view
understands that software can assume different stages on a
gradient of density, from more-abstract to more-concrete
software. This view is grounded on computer science
concepts of Abstraction and Refinement [2] [35]. We
understand that software generators can just produce
concrete software if there are sets of available abstractions,
with associated interpretations, that can be used according
to pre-defined laws of compositions.

A generic software generator (GSG) is one which can
be used on several scenarios, being customizable to fulfill
the generative needs for the production of several different
kinds of software, rather than being limited to a very
specific class of software. As such, we define a domain-
oriented GSG as a GSG in which the features of a generic
architecture are segmented and encapsulated through the
several domains it encompass. A domain model must be
clearly defined because, in this kind of tool, domains play a

major role. This is the kind of generative approach we are
currently pursuing on our research.

4 A Generative Architecture: Draco Machine
Revisited

Given the previous sketched thoughts, we believe, a
generative tool should minimally address the following
requirements:

• A component model where the protocol of interfaces
is formally specified. In this way, the component builder’s
view on how it can be used is explicitly defined. Also, as a
consequence of proceeding like this, adapters can be
automatically produced when we want to tie components.

• Abstract specifications as the primary source of
description for software systems, so it is possible to reason
about and choose among multiple choices of concrete
implementations during the design process.

• Use of a domain-specific scheme for the
encapsulation of system knowledge so that common
concepts can be reused, at the requirements ans
specification levels. As a consequence, there is a possibility
to provide pre and post requirements traceability [16].

• Generative production of concrete componentry so
that specific parts of it can be constructed on-the-fly, by
demand of instantiated applications, rather than using a
statically exhaustive set of components libraries.

Our main motivation for this research is our work at the
Draco-PUC project [1]]. In this project, we are putting
forward the ideas of the Draco paradigm [25], by building a
system that makes possible experimentation with domain-
oriented software production. Until now, our research has
been deeply biased towards the transformational mechanism
which gives support for Draco-PUC machine. This proposal
aims to develop a Draco-PUC concept of components. In
order to attain this goal, we believe the following tasks
should be tackled:

• Development of a component model that address our
understanding of the problem with current componentware
practice.

• Building laguages and mechanisms in Draco-PUC
which enable the use of the proposed component model.

• Making Draco-PUC and CORBA component models
interoperable at the implementation level.

Currently, we are studying the requirements for Draco-
PUC component model and we are also conducting
experiments with CORBA so we can better understand its
workings.

5 Conclusion

This work is investigating how domain-oriented GSGs
can help us in developing component-based software, in a
way to overcome current failures with the practice of
componentware. Studying popular RAD tools, we have
pinpointed four main probleem factors: the high-impedance
among components, the inflationary aspects of
implementation-level encapsulation and aggregation, the
narrow window of opportunity for systems optimization and
the lack of scalability for component libraries. Motivated by
the Draco-PUC project and by Neighbor’s vision of
components, we are researching paths to put into practice a
domain-oriiented GSG that can handle these problems of
evolutionary componentware.

Following our agenda of tasks, we are currently
studying requirements for a component model, which will
be followed by the construction of languages and
mechanisms for the Draco-PUC machine in order to put this
component model in practice. A point of great interest to us
is optimization, so we can develop a model where final
applications can carry efficient essential code only. To
attain this objective, we believe we can stand firmly on the
transformational technology we have already developed in
the Draco-PUC project. Further in our research path, at the
implementation level, we also expect to make Draco-PUC
and CORBA interoperable, so that Draco-PUC components
can be tied together with CORBA objects, as well as
allowing CORBA components to be incorporated into
Draco-PUC domains.

References

[1] P. S. C. Alencar, D. D. Cowan, C. J. P. Lucena, and T.
Nelson. Towards a Formal Link Between Viewpoints in
Analysis and Implementation. In #rd. OOPSLA Workshop on
Subjectivity, San Jose, California, October 1996.

[2] R. J. R. Back. A calculus of refinements for program
derivations. Acta Informatica, 25, 198.

[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable
Software Libraries. In ACM SIGSOFT’93: Symposium on the
Foundations of Software Engineering, Los Angeles,
California, December 1993. ACM.

[4] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and
M. Sirkin. The GenVoca Model of Software-System
Generators. IEEE Software (Issue on Systematic Reuse),
11(5), September 1994.

[5] I. D. Baxter. Transformational Maintenance by Reuse of
Design Histories. PhD thesis, University of California at
Irvine, 1990.

[6] I. D. Baxter. Generators as Key to Effective Software Reuse.
In M. Sitaraman, editor, 4th International Conference on

Software Reusability, page 218, Orlando, Florida, April
1996. IEEE Press.

[7] M. Betz. Interoperable objects. Dr. Dobb’s Journal,
19(11):cover story, October 1994.

[8] T. J. Biggerstaff. The Library Scaling Problem and the Limits
of Concrete Component Reuse. In W. B. Frakes, editor, 3rd
International Conference on Software Reusability, pages
102-109, Rio de Janeiro, Brazil, November 1994. IEEE
Press.

[10] T. E. Carone. Client/Server development. Dr. Dobb’s
Journal, 21(11):cover story, November 1996.

[11] J. C. S. do Prado Leite, M. Sant’Anna, and F. G. de Freitas.
Draco-PUC: a Technology Assembly for Domain Oriented
Software Development. In W. B. Frakes, editor, 3rd
International Conference on Software Reusability, pages
102-109, Rio de Janeiro, Brazil, November 1994. IEEE
Press.

[12] M. S. Feather. A Survey and Classification of some Program
Transformation Approaches and Techniques. In IFIP WG2.1
Working Conference on Program Specification and
Transformation, Bad Toelz, Germany, April 1986.

[13] S. F. Fickas. Automating the Transformational Development
of Software. IEEE Transactions on Software Engineering,
SE-11(11):1268-1277, November 1985.

[14] J. Floch. Supporting Evolution and Maintenance by Using a
Flexible Automatic Code Generator. In 17th International
Conference on Software Engineering, pages 21-219, Seattle,
Washington, April 1995. IEEE Press.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns - Elements of Reusable Object-Oriented
Software.Addison-Wesley, 1994.

[16] O. C. Z. Gotel and A. C. W. Finkelstein. An Analysis of The
Requirements Traceability Problem. In 1st International
Conference on Requirements Engineering, pages 94-101,
Colorado Springs, 1994. IEEE Press.

[17] B. Hoffmann and B. Krieg-Bruckner. Program Development
by Specification and Transformation. Springer-Verlag, 1993.

[18] R. K. Jullig. Applying Formal Software Synthesis. IEEE
Software (Issue on Software Synthesis), May 1993.

[20] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kopov,
J. Lewis, D. Oliva, T. Sheard, I. Smith, and L. Walton. A
Software Engineering Experiment in Software Component
Generation. In 18th International Conference on Software
Engineering, pages 542-552, Berlin, Germany, March, 1996.
IEEE Press.

[21] M. M. Lehman. Laws of Software Evolution Revisited. In
EWSPT’96, Nancy, October 1996.

[22] L. Markosian, P. Newcomb, R. Brand, S. Burson, and T.
Kitzmiller. Using an Enabling Technology to Reengineer
Legacy Systems. Communications of the ACM, 37(5), May
1994.

[23] D. McInroy. Mass produced software components. In P.
Naur and B. Randell, editors, Software Engineering, pages
138-155. NATO Science Comitee Report, 1968.

[24] D. Musser and A. Saini. STL Tutorial and Reference Guide:
C++ Programming With the Standard Template Library.
Addison-Wesley, Reading, MA, 1996.

[25] J. M. Neighbors. The DracoApproach to Constructing
Software from Reusable Components. IEEE Transactions on
Software Engineering, SE-10(5):564-574, September 1984.

[26] J. M. Neighbors. An Assessment of Reuse Technology After
Ten Years. In W. B. Frakes, editor, 3rd International
Conference on Software Reusability, pages 102-109, Rio de
Janeiro, Brazil, November 1994. IEEE Press.

[27] J. M. Neighbors. The Benefits of Generators for Reuse. In M.
Sitaraman, editor, 4th International Conference on Software
Reusability, page 218, Orlando, Florida, April 1996. IEEE
Press.

[28] J. M. Neighbors, G. Arango, and J. Leite. Draco 1.3 User’s
Manual. University of California at Irvine, September 1984.

[29] G. S. Novak. Creation of Views for Reuse of Software with
Different Data Representations. IEEE Transactions on
Software Engineering, 21(12):993-1005, December 1995.

[30] S. B. Ornburn and R. J. LeBlanc. Building, Modifying and
Using Component Generators. In 15th International
Conference on Software Engineering, pages 391-402,
Baltimore, Maryland, April 1993. IEEE Press.

[31] D. L. Parnas. Fighting Complexity. IEEE Engineering of
Complex Computer Systems Newsletter, 2(2), October 1995.

[32] H. Partsch and R. Steinbruggen. Program Transformation
Systems. Computing Surveys, 15(3):199-236, September
1983.

[33] J. Siegel. Corba Fundamentals and Programming. Johm
Wiley & Sons, 1996.

[34] J. Udeli. Componentware. Byte Magazine, 19(5):cover story,
May 1994.

[35] M. Ward. Proving Program Refinements and
Transformations. PhD thesis, Oxford University, 1989

