Injecting Management
Robert E. Filman’

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive
Austin, Texas 78759-6509
filman@mcc.com

Object Infrastructure Framework

The goal of the Microelectronics and Computer Technology Corporation’s (MCC) Object
Infrastructure Project (OIP) is to simplify the development and evolution of distributed,
object-oriented applications. OIP is designing an architecture for distributed systems (a
set of rules for distributed, component-based systems to follow) and implementing
frameworks. (Such are examples of Object Infrastructure Frameworks, or OIF.)
Particular frameworks are implemented for different computational environments.

OIP follows the CORBA model of organizing distributed systems. In CORBA, an
object that wants to offer services to other objects describes these services in Interface
Definition Language (IDL). IDL primarily specifies available methods and their type
signatures. An IDL compiler compiles an application’s IDL into the definition of a set of
proxies.

In CORBA, a remote ("server") object is represented on a local address space by a
proxy object (the "stub"). When a process on the local machine (the "client") wants to
invoke a remote method on the server, it makes a call to the stub. The stub encodes the
call to the server and pushes the encoding over the network towards the server. At the
server end, there is a corresponding proxy object (the "skeleton") for decoding the
remote calls and invoking the actual service. (The skeleton and stub cooperate in the
corresponding manner for returning values.) This process is illustrated in Figure 1.

Conceptually, OIP extends this architecture by providing an additional language

@ Application

||
Server Save
stub skeleton

L] Figure 1. CORBA Client, stub, skeleton and server.]
This paper describes work performed at MCC while the author was on assignment from

CORBA

Network

Lockheed Martin Missiles and Space. LMMS contact information: Advanced Technology Center;
Lockheed Martin Missiles and Space; 3251 Hanover Street O/H1-43 B/255; Palo Alto, California
94304. Email: bob.filman@Ilmco.com.

Injecting Management 06/23/98

that describes other desired behavior on the communication path. One possible
implementation of an OIP framework compiles the concerns of this language into OIP
stubs and skeletons which sit between the Client and Server components and the
proxies. Figure 2 illustrates this relationship.

The OIF stub and skeleton realize the "mixing-in" of additional behavior on
procedure calls, much as "mix-in" mechanisms in languages like Zeta-Lisp allowed the
systematic addition of behavior to functions. In actual practice, there are a number of
ways to accomplish such in-mixing, including: compiling stubs, as described above;
taking advantage of built-in "interceptors” or "filters" on the communication path [1], as
provided for in the CORBA security specification (or as implemented by several ORB
vendors); or by actually transforming the application source code (e.g., [2-4]).

Proxy technology reifies the representation of each server on the client. That is,
there is an object "representing” the server within the server address space, and one or
more such representative objects in each client address space. By using one of the
mechanisms above, we can control what gets executed in these proxies (beyond the
functionality placed there by the IDL compiler.)

Although the diagrams show a single "box" for each proxy, the behavior of that box
can be specialized for each server method. In our implementation of OIF proxies, the per
method proxy behavior is dynamically configurable from sub-behaviors. Conceptually,
this can be thought of as maintaining, for each server method, on each proxy, a
sequence of injector objects. A call to the server goes through the injectors on the client
stub, over the network, through the injectors on the server skeleton, into the application
object, then back through the skeleton injectors, network and client stub injectors. This
process is illustrated in Figure 3. Note that the three different methods on the server
have different sequences of injectors. In OIP, we use an annotation mechanism to
communicate information among injectors [1]. Uses of injectors include logging injectors
that record details of calls; queue management injectors that prioritize calls; futures
injectors that turn synchronous communication into a futures-based approach; choice

(e (Seve) ppcaton
gub skdeton OIF

Server Serve

stub skel_eton
| |

| |

CORBA

Network
Figure 2. Client, OIF stub, CORBA stub, CORBA skeleton, OIF skeleton, and server

Injecting Management 06/23/98

injectors, that, given a variety of ways of satisfying a request (e.g., multiple servers or
alternative algorithms) can dynamically adjust calls based on current and historical
performance; and caching injectors that (transparently to the application) return the
value of cached function calls without the expense of remote communication.

Figure 3: Injector invocation sequence

Managing Components

Let us illustrate the power of these ideas in the context of the dynamic management of
component systems. ISO, in their standards for network management, identifies five
sub-tasks to the activity of (network) management: performance measurement,
accounting, failure analysis, intrusion detection, and configuration management.
Managing distributed applications is very similar to network management. The clever
use of communication injectors can be helpful in each of these tasks:

* Performance measurement injectors can record the time of events (e.g., the
initiation of a request, the receipt of an answer, the initiation of the server-side
processing of a request, the production by the server of the answer).
Appropriately coalesced, this data is the basis for performance evaluation. Of
course, this is giving us information about the performance of black-box
components, not the performance interior to the components.

» Accounting injectors can verify account status, log the information required for
payment, and even cause the appropriate billing transactions to begin. All this
can be done independent of the original application. However, accounting
injectors cannot account with respect to the interior activities of an application.
That is, an accounting injector can charge for use of a database per query, by
complexity of the query, by the number of records returned by the query or

Injecting Management 06/23/98

even by the amount of time it took to process the query. But it can’t charge by
the number of records accessed in the processing the query.

e Failure analysis is a primary activity of programmers and a major concern of
administrators. Trace injectors can report on calls and returned values. Break
injectors can interrupt processing to allow human (or softbot) examination of
the call and return values. Heartbeat injectors can verify connectivity and report
its demise. These things once again are the appropriate-level tools for
examining behavior between components, but not within components.

* Intrusion detection injectors can be programmed to recognize and report on
intrusion patterns [5]. Note that such injectors can react to intrusions
dynamically (even blocking certain kinds of access which a system is under
attack) rather than merely writing logs for retrospective examination.

e Configuration injectors can check and update component configurations. To
the extent that the compilation of new versions of a component can be done
with respect to a new version of a "version" injector, injectors can be used to
make sure that appropriate component versions are being used together.
Properly endowed injectors can even dynamically update components.
However, all these (dynamically configurable) injectors on proxies themselves
present a configuration problem. That problem is likely to be more severe than
simply configuring monolithic components.

Two common themes run through this litany, that of injectors that report and broadcast
interesting events and of additional cleverness in the definition of "interesting." In our
OIP work we are developing enhanced versions of "event channels," where applications
can more selectively subscribe to appropriate information. Similarly, injectors can apply
more complex, historical-pattern tests in deciding which events to publish. These
patterns can be based not only on the actual arguments and results of calls, but also on a
common language of message annotation [1]. By selective reporting (and being able to
dynamically configure what is reported), injector-based mechanisms can avoid
information flood.

Concluding remarks

We have argued that controlling the inter-component communications gives a good
handle on dynamic component management. Our initial experiments have lent credence
to this hypothesis: we have developed a system for inserting injectors into CORBA
applications and have been particularly pleased with the use of reporting injectors in
debugging applications. We are currently working on extending this demonstration to
all aspects of systemm management and security.

Acknowledgments

The ideas expressed in this paper have emerged from the work of the MCC Obiject
Infrastructure Project, particularly Stu Barrett, Carol Burt, Deborah Cobb, Tw Cook,
Phillip Foster, Diana Lee, Barry Leiner, Ted Linden, David Milgram, Gabor Seymour,
Doug Stuart and Craig Thompson.

My thanks to Tw Cook, Diana Lee, Ted Linden, Dave Milgram and Tom Shields for
comments on the drafts of this paper.

Injecting Management 06/23/98

References

[1]

[2]

3]

[4]

[5]

Robert E. Filman, "Injecting llities," Workshop on Aspect Oriented Programming, ICSE-20, Kyoto,
April 1998.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin “Aspect-Oriented Programming, ” Xerox PARC Technical
Report, February 97, SPL97-008 P9710042.
http://www.parc.xerox.com/spl/projects/aop/tr-aop.htm

Cristina Videira Lopes, and Gregor Kiczales, "D: A Language Framework For Distributed
Programming,” Xerox PARC Technical report, February 97, SPL97-010 P9710047.
http://www.parc.xerox.com/spl/projects/aop/tr-d.htm

Robert E. Filman, "Applying Al to Software Renovation," Automated Software Engineering, Vol.
4, 1997, pp. 341-360.

Robert Filman and Ted Linden, “Communicating Security Agents,” The Fifth IEEE-

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises---
International Workshop on Enterprise Security, Stanford, California, June 1996, pp. 86-91.

