
Architecting Trustworthy Self-adaptive Systems
Radu Calinescu∗, Danny Weyns†, Simos Gerasimou∗ and Ibrahim Habli∗

∗Department of Computer Science & Assuring Autonomy International Programme, University of York, UK
Email: {radu.calinescu,simos.gerasimou,ibrahim.habli}@york.ac.uk

†Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Email: danny.weyns@kuleuven.be

I. SUMMARY

Architecting self-adaptive software systems is challenging.
These systems must achieve their goals not only in the envi-
ronment in which they are deployed initially, but also as this
environment changes over time. When self-adaptive systems
are used in safety-critical and business-critical applications,
this challenge is compounded by the need to also provide
guarantees that the system operates correctly at all times.
For traditional software, such guarantees are provided through
assurance cases. These are structured arguments which use
comprehensive development-time evidence to explain why a
system can be trusted when used for its planned application in
a given environment. This tutorial will present the ENTRUST
methodology for achieving a similar level of trust in self-
adaptive systems. ENTRUST represents the first end-to-end
methodology for architecting trustworthy self-adaptive sys-
tems and dynamic assurance cases guaranteeing the suitability
of the software for its intended applications. As advocated by
major research initiatives such as the UK-led Assuring Au-
tonomy International Programme and the US Assured Auton-
omy program, ENTRUST dynamic assurance cases seamlessly
combine evidence obtained during the development of a self-
adaptive system with evidence obtained from its additional
verification at runtime. As such, each dynamic reconfiguration
of an ENTRUST self-adaptive system is accompanied by a
new version of the assurance case that confirms the correctness
of the reconfigured system architecture.

The tutorial will start with an overview of self-adaptive sys-
tems used in safety-critical and business-critical applications.
This will be followed by an introduction to assurance cases, an
explanation of the recent paradigm shift to dynamic assurance
cases, and the description of the ENTRUST methodology and
of its use of the model checkers UPPAAL and PRISM at
different stages of the self-adaptive system lifecycle. We will
conclude by showing how ENTRUST can be used to engineer
a self-adaptive unmanned underwater vehicle system and a
self-adaptive service-based system.

The tutorial will actively engage attendees and include
practical demonstrations. Attending it will benefit researchers
and software architects with an interest in self-adaptive and
autonomous software systems, as well as those interested in
the rigorous modelling, analysis and verification of the control
software of such systems.

II. TOPIC DESCRIPTION AND RELEVANCE FOR THE ICSA
COMMUNITY

(i) Description of the topic

Self-adaptive software systems modify their architecture
and parameters at runtime, in response to changes in the
environment. As such, they can continue to achieve user-
specified goals despite variations in workload, component
failures, changes in available resources, etc. The demand for
these systems has grown rapidly in the past decade, as such
changes are increasingly common in applications that use
software in healthcare, transportation, finance, e-commerce
and numerous other domains. Many of these applications are
safety critical or business critical. Goal violations can result
in harm to patients in a self-adaptive system that monitors the
vital signs of sufferers from chronic conditions like diabetes
or high blood pressure [1]. Alternatively, goal violations may
lead to expensive equipment damage in a self-adaptive system
of unmanned vehicles pursuing a search operation [2].

Accordingly, the provision of assurances for these self-
adaptive systems was recently identified as a priority by
an international research team that includes many prominent
members of the ICSA community [3]. Our proposed tutorial
will present ENTRUST [4], a newly developed methodology
for the systematic provision of such assurances.

(ii) State of the art in the topic

As assurance has become a major concern for self-adaptive
software only recently, the research in the area is limited. The
state of the art is typically confined to providing evidence that
individual aspects of the self-adaptive software are correct.
These aspects include the software platform used to execute
the system controller [5], the controller functions [6], [7], or
the runtime adaptation decisions [8], [9], [10]. The assurance
evidence for each aspect can be obtained using methods that
range from formal proof techniques [11] and model checking
[6] to simulation [10] and testing [12].

However, this evidence represents only one component of
the established industry process for the assurance of software-
based systems used in critical applications [13]. In real-world
applications, assuring a software system requires the provision
of an assurance case, i.e., a structured argument that use
comprehensive development-time evidence to explain why a
system can be trusted when used for its planned application



in a given environment. ENTRUST, the methodology for ar-
chitecting trustworthy self-adaptive systems we will present in
the tutorial, is the first approach that addresses this discrepancy
between the industrial practice and the current research on
assurances for self-adaptive software. To this end, ENTRUST
uses a combination of (1) development-time and runtime
modelling, testing and verification, and (2) an industry-adopted
standard for the formalisation of assurance arguments [14].

ENTRUST uses development-time modelling, verification
and synthesis of assurance evidence for the control aspects of
a self-adaptive system that are engineered before the system
is deployed. These activities enable the generation of a partial
assurance case for the self-adaptive system. The dynamic
selection of a system configuration (i.e., architecture and
parameters) during the initial deployment and after internal
and environmental changes involves further modelling and ver-
ification, and the synthesis of the additional assurance evidence
required to complete the assurance case. These activities are
fully automated and carried out at runtime.

(iii) Intended audience

The tutorial targets attendees from academia and industry
with an interest in:

• Understanding the motivation and need for trustworthy
self-adaptive systems;

• Learning about dynamic assurance cases and there appli-
cation to safety- and business-critical software;

• Getting familiar with techniques and methods for the
architecting of trustworthy self-adaptive systems;

• Learning about the architecting of concrete cases of
trustworthy self-adaptive systems;

• Gaining insights into the open challenges from the field
of trustworthy self-adaptive systems.

(iv) Relevance for ICSA

The tutorial is closely aligned with multiple topics of
interest from the ICSA-2019 call for papers,1 including:

• Model driven engineering for continuous architecting.
The use of model-driven engineering is one of the two
underpinning principles of the ENTRUST methodology;

• Architecting Systems of Systems, IoT systems, CPSs, soft-
ware ecosystems, self-adaptive systems, or autonomous
systems. The tutorial addresses on the architecting of self-
adaptive systems.

• Component based software engineering and architecture
design. ENTRUST is a component-based software engi-
neering methodology.

III. IMPLEMENTATION

(i) Duration of the proposed tutorial

We propose a full-day tutorial. As for the ICSA-2018
tutorials, this will include four 1.5-hour tutorial sessions (six
hours in total), with coffee breaks and lunch between sessions.

1https://swk-www.informatik.uni-hamburg.de/∼icsa2019/call-for-papers/
technical-papers/index.html

(ii) Preliminary schedule of events

The planned schedule of the tutorial is detailed below.

Session 1 (1.5 hours)
0:00–0:30 Introduction to self-adaptive software systems

used in safety- and business-critical applications
0:30–1:30 A primer on assurance case development

Coffee break

Session 2 (1.5 hours)
0:00–0:45 The ENTRUST methodology for architecting

trustworthy self-adaptive systems
0:45–1:30 Development-time stages of ENTRUST

Lunch

Session 3 (1.5 hours)
0:00–0:45 Runtime stages of ENTRUST
0:45–1:30 Case study 1: ENTRUST development of a self-

adaptive unmanned underwater vehicle system

Coffee break

Session 4 (1.5 hours)
0:00–0:45 Case study 2: ENTRUST development of a self-

adaptive foreign exchange service-based system
0:45–1:30 ENTRUST extensions and discussion

(iii) Justification of the tutorial for the expected audience

With the rapid introduction of the Internet-of-Things and
Cyber-Physical Systems in domains ranging from smart envi-
ronment monitoring to autonomous transportation, the adapt-
ability and trustworthiness of these systems is widely consid-
ered as foundational for the future of our society. Hence, archi-
tecting trustworthy self-adaptive systems is becoming a central
point of interest and importance for the ICSA community. The
particular perspective of dynamic assurance cases as driver for
trustworthiness and the ability of systems to dynamically adapt
their architecture in response to uncertainties and changes at
runtime will provide the audience of this tutorial new insights
and knowledge for their future research and practice.

(iv) Detailed description of what the tutorial will cover

Session 1 will comprise two parts. Part one will introduce
the challenges faced by self-adaptive systems used in safety-
and business-critical applications. We will start by presenting
the general architecture of a self-adaptive system. Next, we
will describe the types of uncertainty encountered by self-
adaptive systems, and explain the need for the provision of
perpetual assurances for these systems [15]. In part two, we
will cover the use of assurance cases for these types of
applications. We will introduce three key concepts associated
with assurance [13]: assurance cases, assurance arguments,
and assurance argument patterns, and we will present an
overview of the Goal Structuring Notation standard [14] for the
systematic development of assurance cases. We will end the
session with a description of the recently introduced concept
of a dynamic assurance case [16], and explain the need for
using dynamic assurance cases for self-adaptive systems.

2



1. Develop
verifiable
models

2. Verify
controller
models

4. Enact
controller

5. Deploy
self-adaptive

system

3. Partially
instantiate
arg. pattern

7. Update
assurance
argument

E
N
T
R
U
S
T

st
a
g
es

S
o
ft
w
ar
e
ar
te
fa
ct
s

a
p
p
.
sp

ec
ifi
c

re
u
sa
b
le

Incomplete
system&env.
models

Controller
model(s)

Verified
controller
platform

a
p
p
.

sp
ec
ifi
c

re
u
sa
b
le

Controller
assurance
evidence

Assurance
argument
pattern

Controller

Dynamic
assurance
argument

Adaptation
assurance
evidence

M A P E

6. Self-adapt

Deployed
self-adaptive
system

Up-to-date
system&env.
models

Reconfigured
self-adaptive
system

Design-time stages

A
ss
u
ra
n
ce

ar
te
fa
ct
s

System
requirements

Controller
model
template(s)

Generic
controller
requirements

Domain
knowledge

Controlled
system
specification

Platform
assurance
evidence

Partial
assurance
argument

Runtime stages

Controlled
system

Fig. 1. Stages and key artefacts of the ENTRUST methodology (diagram taken from [4]

In the first half of Session 2, we will present the princi-
ples underpinning the ENTRUST methodology, and we will
introduce the design-time and runtime stage of ENTRUST
(Fig. 1). We will describe the key software and assurance
artefacts produced in each stage, and explain their role in
architecting and assuring a self-adaptive software system. We
will then use the second half of the session to describe
in detail the development-time ENTRUST stages, and their
partial automation using formal methods and the UPPAAL
verification tool suite [17]. This will include a presentation of
the generic assurance argument pattern that ENTRUST uses
for self-adaptive systems, and of the method employed for
the partial instantiation of this pattern using the incomplete
assurance evidence available for such systems at development
time. We will illustrate this stage of the methodology using a
running example from the maritime environment monitoring
domain, i.e., a self-adaptive system comprising an unmanned
underwater vehicle (UUV) that measures a characteristic of
the ocean environment such as salinity or temperature.

We will start Session 3 with a detailed description of the
runtime stages of ENTRUST, and of the use of runtime
probabilistic model checking [18] to fully automate these
stages. As part of this description, we will present:

1) the use of probabilistic model synthesis [19], [20]
to drive the architectural reconfiguration of the self-
adaptive system;

2) the use of assurance evidence generated at runtime (us-
ing probabilistic model checking) to devise a complete,
dynamic assurance case for the self-adaptive system.

We will end the session with a description of a case study
based on the UUV self-adaptive system from the running

example. This description will focus on the reconfiguration
of the system architecture after disruptive changes in the
environment (and after recovery from these adverse events),
and on the synthesis of dynamic assurance cases for the
reconfigured system.

Finally, in the first half of Session 4 we will present a second
application of the ENTRUST methodology, in a case study
focusing on a business-critical self-adaptive system. This will
be a service-based system used in a foreign exchange trading
application, and requiring the dynamic selection of the services
that implement its operations. In the last part of the session, we
will cover a summary of additional verification methods (e.g.,
testing, simulation and theorem proving) that can be used to
obtain assurance evidence for ENTRUST dynamic assurance
cases; and we will engage the tutorial participants in a general
discussion about the provision of assurances for self-adaptive
software systems.

(v) Explanation of how the tutorial will be conducted

The tutorial will be delivered as a series of four highly in-
teractive tutorial sessions comprising slide-based presentations
accompanied by frequent (i) hands-on exercises (to ensure
participant engagement and understanding) and (ii) demon-
strations of practical uses of the ENTRUST methodology.

IV. PRESENTERS’ BACKGROUND

Dr Radu Calinescu is a Senior Lecturer in the Department
of Computer Science at the University of York, UK, where
he leads a research team developing formal techniques for the
modelling, analysis and verification of self-adaptive software
systems for safety-critical applications. His research has been
funded by grants totalling over £1.75M, and is published in

3



100+ peer-reviewed research papers. He is also the Safety
of AI Theme Lead for the Assuring Autonomy International
Programme, a £12M research and training initiative he helped
set up in 2018. He has been a Programme Chair of major in-
ternational conferences (SEAMS 2020, SEFM 2015, ICECCS
2010), and has served on the programme committees of over
50 conferences (including TACAS, ASE and MASCOTS). His
University of Oxford PhD thesis won a British Computer So-
ciety Distinguished Dissertation Award. He has given keynote
and invited presentations at multiple international conferences
and workshops, and an ICSA-2017 tutorial with 12 registered
participants.

Prof Danny Weyns is affiliated with the Department of
Computer Science at KU Leuven, Belgium, where he leads a
research team on engineering self-adaptive software systems.
He is also affiliated with Linnaeus University Sweden. His
current research interest is in runtime assurances for self-
adaptive systems using both architecture-based and control-
based approaches. Dr. Weyns coordinates a research project
on trustworthy decentralized self-adaptive systems and another
project on dependable adaptive software for the Internet of
Things. He is member of the Editorial Board of ACM Trans-
actions on Autonomous and Adaptive Systems, the Journal
on Agents and Multi-Agent Systems, the Journal of Systems
and Software, and IEEE Software. He was recently PC chair
for VAMOS’19 and SEAMS’18 and has provided tutorials at
several international events, including SASO’18 and ASE’15.

Dr Simos Gerasimou is a Research Associate in the High
Integrity Systems Engineering group within the Department
of Computer Science at the University of York. His re-
search interests are in engineering trustworthy autonomous
systems through the development of rigorous tool-supported
approaches using model-based analysis, simulation and formal
verification. Dr. Gerasimou has published over 20 research
papers in peer-reviewed international conferences and journals.
His current research, funded by Jaguar Land Rover, focuses on
the application of assurance cases in the automotive domain
and the development of an engineering framework for assuring
the safety of autonomous vehicles. He is regularly reviewing
for well-known software engineering and safety journals such
as Computing, Software Quality, and Reliability Engineering
and System Safety.

Dr Ibrahim Habli is a Senior Lecturer in the Department
of Computer Science at the University of York. His research
interests are in the design and assurance of safety-critical
systems. In 2015, he was awarded a Royal Academy of
Engineering Industrial Fellowship through which he collab-
orated with the English National Health Service on evidence-
based means for assuring the safety of digital health systems.
Ibrahim’s work is highly interdisciplinary, with active collab-
orative links with clinicians, health scientists, economists and
ethicists. His research is empirical and industry-informed, with
collaborative projects with organisations such as Rolls-Royce,
NASA, Jaguar Land Rover and NHS Digital. Ibrahim has
led/co-led research programmes funded by the UK Research
Councils, the Royal Academy of Engineering, the EU and

industry. He is also the Dynamic Risk Theme Lead for
the Assuring Autonomy International Programme, a £12M
research and training initiative he helped set up in 2018. He
has been a member of several international and national safety
standardisation committees (e.g. DO178C, MISRA and BSI).

REFERENCES

[1] D. Weyns and R. Calinescu, “Tele Assistance: A self-adaptive service-
based system exemplar,” in SEAMS’15, 2015, pp. 88–92.

[2] S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns, “UNDERSEA:
An exemplar for engineering self-adaptive unmanned underwater vehi-
cles,” in SEAMS’17, 2017, pp. 83–89.

[3] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu,
B. Schmerl, D. Weyns, L. Baresi, N. Bencomo, Y. Brun, J. Camara,
R. Calinescu, M. B. Cohen, A. Gorla, V. Grassi, L. Grunske, P. Inverardi,
J.-M. Jezequel, S. Malek, R. Mirandola, M. Mori, H. A. Müller,
R. Rouvoy, C. M. F. Rubira, E. Rutten, M. Shaw, G. Tamburrelli,
G. Tamura, N. M. Villegas, T. Vogel, and F. Zambonelli, “Software
engineering for self-adaptive systems: Research challenges in the provi-
sion of assurances,” in Software Engineering for Self-Adaptive Systems
III. Assurances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds.
Springer, 2017, pp. 3–30.

[4] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering trustworthy self-adaptive software with dynamic
assurance cases,” IEEE Transactions on Software Engineering, vol. 44,
no. 11, pp. 1039–1069, 2018.

[5] M. U. Iftikhar and D. Weyns, “ActivFORMS: Active formal models for
self-adaptation,” in SEAMS’14, 2014, pp. 125–134.

[6] V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel,
“Controller synthesis: From modelling to enactment,” in ICSE’13, 2013.

[7] J. Camara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira,
“Robustness-driven resilience evaluation of self-adaptive software sys-
tems,” IEEE Transactions on Dependable and Secure Computing,
vol. 14, no. 1, pp. 50–64, Jan 2017.

[8] R. Calinescu, S. Gerasimou, K. Johnson, and C. Paterson, “Using
runtime quantitative verification to provide assurance evidence for self-
adaptive software,” in Software Engineering for Self-Adaptive Systems
III. Assurances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds.
Springer, 2017, pp. 223–248.

[9] R. Calinescu and M. Kwiatkowska, “CADS*: Computer-aided develop-
ment of self-* systems,” in FASE’09, 2009, pp. 421–424.

[10] D. Weyns and M. U. Iftikhar, “Model-based simulation at runtime for
self-adaptive systems,” in ICAC’16, 2016, pp. 364–373.

[11] N. R. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesis
of live behaviour models,” in FSE’10, 2010, pp. 77–86.

[12] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards run-
time adaptation of test cases for self-adaptive systems in the face of
uncertainty,” in SEAMS’14, 2014, pp. 17–26.

[13] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past, present
and possible future,” in Making Systems Safer. Springer, 2010, pp.
51–67.

[14] J. Spriggs, GSN – The Goal Structuring Notation. A Structured Approach
to Presenting Arguments. Springer, 2012.

[15] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi,
L. Grunske, P. Inverardi, J.-M. Jezequel, S. Malek, R. Mirandola,
M. Mori, and G. Tamburrelli, “Perpetual assurances for self-adaptive
systems,” in Software Engineering for Self-Adaptive Systems III. Assur-
ances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds. Springer,
2017, pp. 31–63.

[16] E. Denney, G. Pai, and I. Habli, “Dynamic safety cases for through-life
safety assurance,” in ICSE’15, 2015, pp. 587–590.

[17] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “UPPAAL 4.0,” in QEST’06, 2006, pp. 125–126.

[18] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Communi-
cations of the ACM, vol. 55, no. 9, pp. 69–77, September 2012.

[19] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Efficient synthesis of robust models for stochastic systems,”
Journal of Systems and Software, vol. 143, pp. 140–158, 2018.

[20] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated
Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.

4


